Осью симметрии равнобедренного прямоугольного треугольника является высота, проведенная к гипотенузе. В данном случае она же - высота конуса и равна радиусу его основания, так как является еще медианой. ( свойство),
Центральный угол АОС равен дуге, на которую опирается, т.е. 90°.
Хорда АС является основанием равнобедренного прямоугольного треугольника АОС с катетами, равными радиусу конуса.
Плоскость АВС и плоскость основания конуса образуют двугранный угол, который измеряется величиной его линейного угла.
Линейным углом двугранного угла называется угол, сторонами которого являются лучи с общим началом на ребре двугранного угла, которые проведены в его гранях перпендикулярно ребру.
Проведем высоту ОМ ( она же медиана) ∆ АОС.
ОМ⊥АС. По т. о 3-х перпендикулярах наклонная ВМ⊥АС.
Угол ВМО - искомый.
Примем радиус и высоту конуса равными а. Высота ВО конуса перпендикулярна основанию, следовательно, перпендикулярна любой прямой, проходящей в плоскости основания через О .
∆ ВОМ - прямоугольный.
В ∆ АОС медиана ОМ равна АМ, т.е. половине АС ( свойство медианы).⇒
∆ АОМ равнобедренный прямоугольный, его острые углы равны 45°
ОМ=ОА•sin45°=a•√2/2.
tg∠ВМО=ВО:МО=(а:(а√2:2)=√2
Если требуется выразить его в градусах, угол ВМО=54°44'
Треугольник вписан в окружность. АС - радиус описанной окружности, ВС - сторона треугольника, ВD - медиана. Построить треугольник.
Построим окружность с радиусом АС и сторону треугольника ВС в виде хорды.
Из точки В построим окружность с радиусом, равным медиане ВD.
Из середины отрезка АС построим окружность диаметром АС. Точка I - центр этой окружности.
Две последние окружности пересекаются в точках F и G. BF=BG=BD - отрезки, равные данной медиане.
Из точки С через точки F и G построим хорды СЕ и СН.
Вписанные треугольники АСF и АСG прямоугольные так как опираются на диаметр АС, значит отрезки AF и AG перпендикулярны хордам СЕ и СН. Точка А - центр окружности для эти хорд, значит CF=EF и CG=HG.
Получилось два треугольника СВЕ и СВН, удовлетворяющие условию задачи.
Рассматривая варианты построения можно заметить, что при данных стороне и радиусе описанной окружности построить можно только тот треугольник, у которого длина медианы позволяет окружностям с центрами в точках В и I пересечься. Если же получилось, что медиана лежит на отрезке ВI, то треугольник получится только один так как окружности с центрами В и I будут лишь касаться.
Предлагаю варианты построения для постоянных длин стороны АС и радиуса описанной окружности АС. Меняется только длина медианы ВD.
Обозначим данный треугольник АВК, угол В=90°.
Осью симметрии равнобедренного прямоугольного треугольника является высота, проведенная к гипотенузе. В данном случае она же - высота конуса и равна радиусу его основания, так как является еще медианой. ( свойство),
Центральный угол АОС равен дуге, на которую опирается, т.е. 90°.
Хорда АС является основанием равнобедренного прямоугольного треугольника АОС с катетами, равными радиусу конуса.
Плоскость АВС и плоскость основания конуса образуют двугранный угол, который измеряется величиной его линейного угла.
Линейным углом двугранного угла называется угол, сторонами которого являются лучи с общим началом на ребре двугранного угла, которые проведены в его гранях перпендикулярно ребру.
Проведем высоту ОМ ( она же медиана) ∆ АОС.
ОМ⊥АС. По т. о 3-х перпендикулярах наклонная ВМ⊥АС.
Угол ВМО - искомый.
Примем радиус и высоту конуса равными а. Высота ВО конуса перпендикулярна основанию, следовательно, перпендикулярна любой прямой, проходящей в плоскости основания через О .
∆ ВОМ - прямоугольный.
В ∆ АОС медиана ОМ равна АМ, т.е. половине АС ( свойство медианы).⇒
∆ АОМ равнобедренный прямоугольный, его острые углы равны 45°
ОМ=ОА•sin45°=a•√2/2.
tg∠ВМО=ВО:МО=(а:(а√2:2)=√2
Если требуется выразить его в градусах, угол ВМО=54°44'
АС - радиус описанной окружности, ВС - сторона треугольника, ВD - медиана.
Построить треугольник.
Построим окружность с радиусом АС и сторону треугольника ВС в виде хорды.
Из точки В построим окружность с радиусом, равным медиане ВD.
Из середины отрезка АС построим окружность диаметром АС. Точка I - центр этой окружности.
Две последние окружности пересекаются в точках F и G.
BF=BG=BD - отрезки, равные данной медиане.
Из точки С через точки F и G построим хорды СЕ и СН.
Вписанные треугольники АСF и АСG прямоугольные так как опираются на диаметр АС, значит отрезки AF и AG перпендикулярны хордам СЕ и СН. Точка А - центр окружности для эти хорд, значит CF=EF и CG=HG.
Получилось два треугольника СВЕ и СВН, удовлетворяющие условию задачи.
Рассматривая варианты построения можно заметить, что при данных стороне и радиусе описанной окружности построить можно только тот треугольник, у которого длина медианы позволяет окружностям с центрами в точках В и I пересечься.
Если же получилось, что медиана лежит на отрезке ВI, то треугольник получится только один так как окружности с центрами В и I будут лишь касаться.
Предлагаю варианты построения для постоянных длин стороны АС и радиуса описанной окружности АС. Меняется только длина медианы ВD.