Трапеция АВСД, АД-диаметр, АО=ОД=радиус, АД=2ВС, АВ=2, трапеция равнобокая - только в равнобокую трапецию можно вписать окружность, АВ=СД, уголА=уголД, проводим высоты ВН и СК на АД, треугольники АВН и КСД равны как прямоугольные по гипотенузе и острому углу, АН=КД, НВСК-прямоугольник ВС=НК=2х, АН=КС=(АД-НК)/2=(2ВС-ВС)/2=0,5ВС=х, НО=ОК=НК/2=2х/2=х, ОД=радиус=ОК+КД=х+х=2х=ОС, треугольник ОСК прямоугольный катет ОК=1/2 гипотенузы ОС, уголОСК=30, уголСОК=90-30=60, СК=ОС*sin60=2х*корень3/2=х/корень3, СД в квадрате=СК в квадрате+КД в квадрате=3*х в квадрате + х в квадрате=4х в квадрате, СД=2х=2 см, х=1, радиус=2*1=2
Теория - основа для решения задач. Раз изучаете вписанные и описанные окружности, наверняка уже знаете, что центр вписанной в треугольник окружности находится в точке пересечения его биссектрис. Знаете также и то, что центр описанной окружности - в точке пересечения срединных перпендикуляров, проведенных к каждой из его сторон. В равностороннем треугольнике все биссектрисы и высоты пересекаются в одной точке, и эта точка - центр и вписанной, и описанной окружности, так как высота равностороннего треугольника и есть срединный перпендикуляр к стороне. Почему - доказывать не стоит, наверняка знаете. О том, что медианы треугольника пересекаются в одной точке и точкой пересечения делятся в отношении 2:1- считая от вершины, Вы уже должны знать. Вот на знании всех этих свойств и построено решение задачи. Точка пересечения биссектрис треугольника равноудалена от всех его сторон. Расстояние от нее до стороны - радиус вписанной окружности. В равностороннем треугольнике это 1/3 медианы - и это и 1/3 биссектрисы и 1/3 высоты ( три в одном флаконе). Радиус описанной вокруг равностороннего треугольника окружности - расстояние от точки пересечения высот до вершин треугольника, и это расстояние в два раза больше расстояния от точки пересечения биссектрис (высот) до стороны треугольника. Итак, радиус описанной вокруг равностороннего треугольника окружности в два раза больше радиуса вписанной в него. R=2r= 5*2=10 cм См. рисунок в качестве иллюстрации.
Раз изучаете вписанные и описанные окружности, наверняка уже знаете, что центр вписанной в треугольник окружности находится в точке пересечения его биссектрис.
Знаете также и то, что
центр описанной окружности - в точке пересечения срединных перпендикуляров, проведенных к каждой из его сторон.
В равностороннем треугольнике все биссектрисы и высоты пересекаются в одной точке, и эта точка - центр и вписанной, и описанной окружности, так как высота равностороннего треугольника и есть срединный перпендикуляр к стороне. Почему - доказывать не стоит, наверняка знаете.
О том, что медианы треугольника пересекаются в одной точке и точкой пересечения делятся в отношении 2:1- считая от вершины, Вы уже должны знать.
Вот на знании всех этих свойств и построено решение задачи.
Точка пересечения биссектрис треугольника равноудалена от всех его сторон. Расстояние от нее до стороны - радиус вписанной окружности.
В равностороннем треугольнике это 1/3 медианы - и это и 1/3 биссектрисы и 1/3 высоты ( три в одном флаконе).
Радиус описанной вокруг равностороннего треугольника окружности - расстояние от точки пересечения высот до вершин треугольника, и это расстояние в два раза больше расстояния от точки пересечения биссектрис (высот) до стороны треугольника.
Итак, радиус описанной вокруг равностороннего треугольника окружности в два раза больше радиуса вписанной в него.
R=2r= 5*2=10 cм
См. рисунок в качестве иллюстрации.