Проекции катетов на гипотенузу прямоугольного треугольника - это отрезки гипотенузы, на которые ее делит высота, т.к. высота - перпендикуляр к прямой ( гипотенузе), а катеты – наклонные из вершины прямого угла.
Катет - среднее пропорциональное между гипотенузой и его проекцией на неё .
В треугольнике на рисунке приложения
Катет Вс=30 см, а ВН=18 - его проекция на гипотенузу.
BC²=АВ•НВ
900=АВ•18
АВ=900:18=50 см
Высота, проведенная к гипотенузе, делит прямоугольный треугольник на подобные. Из подобия следует отношение:
АН:АС=АС:АВ
АН=50-18=32
32:АС=АС:50 ⇒ АС²=32•50
АС=√1600=40 см
-----------
Если обратить внимание на отношение катета и гипотенузы 3:5 в ∆ ВСН, увидим, что этот треугольник - египетский. Отсюда следует АВ=50 см, (т.к. меньший катет=30). а АС=40 см. Получим длины сторон треугольника, отношение которых 3:4:5.
Пусть данный параллелограмм будет АВСД. Сделаем соразмерно условию рисунок и рассмотрим его. ВН высота, ⊥ АД и⊥ ВС, ВМ - высота и ⊥АВ и ⊥ прямой СД. ⇒ Угол АВМ - прямой, угол АВН=90-60º, ⇒ угол ВАН=30º ВН противолежит углу 30º, на этом основании рана половине АВ=4 см Площадь параллелограмма равна произведению его высоты на сторону, к которой она проведена. S АВСД=4*12=48 см² Так как противоположные углы параллелограмма равны, точно так же высота к ВД ( она пересекает продолжение СД) равна 12:2=6 см, Ясно, что произведение высоты ВМ и стороны СД = 6*8=48 см²
Проекции катетов на гипотенузу прямоугольного треугольника - это отрезки гипотенузы, на которые ее делит высота, т.к. высота - перпендикуляр к прямой ( гипотенузе), а катеты – наклонные из вершины прямого угла.
Катет - среднее пропорциональное между гипотенузой и его проекцией на неё .
В треугольнике на рисунке приложения
Катет Вс=30 см, а ВН=18 - его проекция на гипотенузу.
BC²=АВ•НВ
900=АВ•18
АВ=900:18=50 см
Высота, проведенная к гипотенузе, делит прямоугольный треугольник на подобные. Из подобия следует отношение:
АН:АС=АС:АВ
АН=50-18=32
32:АС=АС:50 ⇒ АС²=32•50
АС=√1600=40 см
-----------
Если обратить внимание на отношение катета и гипотенузы 3:5 в ∆ ВСН, увидим, что этот треугольник - египетский. Отсюда следует АВ=50 см, (т.к. меньший катет=30). а АС=40 см. Получим длины сторон треугольника, отношение которых 3:4:5.
Сделаем соразмерно условию рисунок и рассмотрим его.
ВН высота, ⊥ АД и⊥ ВС,
ВМ - высота и ⊥АВ и ⊥ прямой СД. ⇒
Угол АВМ - прямой, угол АВН=90-60º, ⇒
угол ВАН=30º
ВН противолежит углу 30º, на этом основании рана половине АВ=4 см
Площадь параллелограмма равна произведению его высоты на сторону, к которой она проведена.
S АВСД=4*12=48 см²
Так как противоположные углы параллелограмма равны, точно так же высота к ВД ( она пересекает продолжение СД) равна 12:2=6 см,
Ясно, что произведение высоты ВМ и стороны СД = 6*8=48 см²