В какой пирамиде совпадают центр вписанной сферы и описанного шара? ( у меня в основании равнобедренная трапеция, у такой. Пирамиды совпадать будет?)
АВСД - трапеция, АД-ВС=14 см, Р=86 см, ∠АВД=∠СВД, АВ=СД. В трапеции биссектриса отсекает от противоположного основания отрезок, равный боковой стороне, прилежащей к биссектрисе (свойство трапеции, да и параллелограмма тоже). В нашем случае биссектриса - это диагональ, значит АВ=АД. АВ=АД=СД, ВС=АД-14 ⇒ Р=4·АД-14, 86=4АД-14, АД=25 см. ВМ - высота на сторону АД. В равнобедренной трапеции АМ=(АД-ВС)/2=14/2=7 см. В тр-ке АВМ ВМ=√(АВ²-АМ²)=√(25²-7²)=24 см. ВС=АД-14=25-14=11 см. Площадь трапеции: S=(АВ+ВС)·ВМ/2=(25+11)·24/2=432 см² - это ответ.
В трапеции биссектриса отсекает от противоположного основания отрезок, равный боковой стороне, прилежащей к биссектрисе (свойство трапеции, да и параллелограмма тоже). В нашем случае биссектриса - это диагональ, значит АВ=АД.
АВ=АД=СД, ВС=АД-14 ⇒ Р=4·АД-14,
86=4АД-14,
АД=25 см.
ВМ - высота на сторону АД.
В равнобедренной трапеции АМ=(АД-ВС)/2=14/2=7 см.
В тр-ке АВМ ВМ=√(АВ²-АМ²)=√(25²-7²)=24 см.
ВС=АД-14=25-14=11 см.
Площадь трапеции: S=(АВ+ВС)·ВМ/2=(25+11)·24/2=432 см² - это ответ.
Смотри объяснения.
Объяснение:
Найдем стороны данного четырехугольника:
|AB| = √((Xb-Xa)²+(Yb-Ya)²)) = √((-1)² + (4)²) = √17 ед.
|CD| = √((Xd-Xc)²+(Yd-Yc)²)) = √(1² + (-4)²) = √17 ед.
|BC| = √((Xc-Xb)²+(Yc-Yb)²)) = √((-4)² + (-1)²) = √17 ед.
|AD| = √((Xd-Xa)²+(Yd-Ya)²)) = √((-4)² + (-1)²) = √17 ед.
Так как противоположные стороны четырехугольника попарно равны, четырехугольник ABCD - параллелограмм.
Вектора перпендикулярны, если их скалярное произведение равно 0. Проверим это на векторах АВ и ВС:
(АВ·ВС) = Xab·Xbc + Yab·Ybc = (-1)·(-4) + 4·(-1) = 4-4 =0.
Таким образом, вектора (стороны параллелограмма) АВ и ВС перпендикулярны.
Параллелограмм, у которого угол между смежными сторонами равен 90°, является прямоугольником, а прямоугольник с равными сторонами является квадратом.
Что и требовалось доказать.