Доказать это невозможно. Вот мое обоснование. Диагональ AC делит 4-угольник на 2 Δ-ка С одним все ясно. Поскольку ∠OBC=∠OCB, ΔBOC равнобедренный, BO=CO. Но O - середина AC⇒AO=CO=BO, то есть O - центр описанной вокруг ΔABC окружности, откуда этот треугольник прямоугольный. То, что катеты этого треугольника относятся как 2:1, позволяет утверждать, что этот Δ мы знаем с точностью до подобия. Про Δ ACD известно только, что AC=CD, то есть если нарисовать окружность с центром в точке C и радиусом CA, то можно лишь утверждать, что точка D находится на этой окружности. Параллельность BC и AD ниоткуда не следует
Для начало нужно определить через какие точки проходит эта прямая 2x+y-6=02x+y−6=0 . для этого выразим "y" затем приравняем левую часть к 0 для того что бы найти точки пересечения с осью ох \begin{lgathered}y=6-2x\\ 6-2x=0\\ x=3\\\end{lgathered}y=6−2x6−2x=0x=3 , а точка пересечения с осью оу =6 , я так понял что точки пересечения по осям а и b даны как 6 и 2 , тогда координата точки "а" так и останется , а координату точки b нужно определить , так как она лежит на этой прямой подставим значение \begin{lgathered}2x+2-6=0\\ x=2\end{lgathered}2x+2−6=0x=2 на рисунке видно ! теперь можно найти конечно уравнение oa для того чтобы найти уравнение аd , но можно поступить так очевидно что точка d будет координата (0; 2) . если вам надо доказательство то нужно решить уравнение пусть координаты точки d(x; y)(x; y)тогда по теореме пифагора каждую сторону выразить получим систему \left \{ {{x^2+(6-y)^2+(x-2)^2+(y-2)^2=20} \atop {(x-2)^2+(y-2)^2+x^2+y^2=8}} \right.{(x−2)2+(y−2)2+x2+y2=8x2+(6−y)2+(x−2)2+(y−2)2=20 решая получим точку d(0; 2) теперь легко найти уравнение ad , по формуле \frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}x2−x1x−x1=y2−y1y−y1 получим y=2 то есть уравнение ad равна это прямая параллельна оси ох
Про Δ ACD известно только, что AC=CD, то есть если нарисовать окружность с центром в точке C и радиусом CA, то можно лишь утверждать, что точка D находится на этой окружности. Параллельность BC и AD ниоткуда не следует