В конус, радиус основания которого равен 2√3, вписана правильная треугольная пирамида. Боковое ребро пирамиды наклонено к плоскости основания под углом 30°. Найдите объем пирамиды ОЧЕНЬ НАДО
Плоскости α и β параллельны. Через точку M, находящуюся между этими плоскостями, проведены две прямые. Одна из них пересекает плоскости α и β в точках A₁ и B₁, а другая — в точках A₂ и B₂ соответственно . Найдите отрезок A₁A₂, если он на 1 см меньше отрезка B₁B₂, MA₂ = 4 см, A₂B₂ = 10 см.
Объяснение:
1) Две пересекающиеся прямые А₁В₁ и А₂В₂ определяют плоскость
(А₁А₂ В₂) единственным образом ( аксиома). Эта плоскость пересекает параллельные плоскости α и β по параллельным прямым А₁А₂ и В₁В₂( свойство).
2) ΔМА₁А₂~ΔMB₁B₂ по 2-м углам : ∠А₁МА₂=∠B₁МB₂ как вертикальные , ∠А₁А₂М =∠В₁В₂М как накрест лежащие при А₁А₂ || В₁В₂, А₂В₂-секущая. Поэтому сходственные стороны пропорциональны
Плоскости α и β параллельны. Через точку M, находящуюся между этими плоскостями, проведены две прямые. Одна из них пересекает плоскости α и β в точках A₁ и B₁, а другая — в точках A₂ и B₂ соответственно . Найдите отрезок A₁A₂, если он на 1 см меньше отрезка B₁B₂, MA₂ = 4 см, A₂B₂ = 10 см.
Объяснение:
1) Две пересекающиеся прямые А₁В₁ и А₂В₂ определяют плоскость
(А₁А₂ В₂) единственным образом ( аксиома). Эта плоскость пересекает параллельные плоскости α и β по параллельным прямым А₁А₂ и В₁В₂( свойство).
2) ΔМА₁А₂~ΔMB₁B₂ по 2-м углам : ∠А₁МА₂=∠B₁МB₂ как вертикальные , ∠А₁А₂М =∠В₁В₂М как накрест лежащие при А₁А₂ || В₁В₂, А₂В₂-секущая. Поэтому сходственные стороны пропорциональны
А₁А₂ : В₁В₂ = АМА₂ : МВ₂
А₁А₂ : (А₁А₂+1) = 4: ( 10-4)
4(А₁А₂+1)=А₁А₂*6 ⇒ А₁А₂= 2 cм
ответ:1) 105°, 85°, 105°, 85°. 2)115°, 65°, 115°, 65°.
Объяснение:
1) Сумма углов, прилегающих к одной из сторон, равна 180°.
По условию сумма двух углов равна 210°, значит они противоположные, т. к. 210° > 180°.
Противоположные углы ромба равны ⇒ 210°:2=105°.
180°-105°=85°.
ответ: 105°, 85°, 105°, 85°.
2) Пусть х° - больший угол, тогда (х°-50°) - больший угол ромба.
Сумма двух углов ромба, прилегающих к одной стороне, равна 180°.
Составим уравнение:
х+х-50=180, 2х=230, х=115. х-50=65.
ответ: 115°, 65°, 115°, 65°.