В координатной системе находится равнобедренный треугольник ABC (AC=BC). Проведены медианы AN и BM к боковым сторонам треугольника. Длина стороны AB = 4, а высоты CO = 14. Определи координаты вершин треугольника, координаты точек M и N и длину медиан AN и BM (oтвет округли до сотых).
A(
;
);
B(
;
);
C(
;
);
N(
;
);
M(
;
);
AN=
;
BM=
.
2.Найди периметр треугольника ABC, если его вершины имеют следующие координаты: A(3;1), B(8;4) и C(4;8).
P=
−−−−−√+
−−−−−√.
3.Точка A находится на положительной полуоси Ox, точка B находится на положительной полуоси Oy.
Нарисуй прямоугольник AOBC и диагонали прямоугольника. Определи координаты вершин прямоугольника и точки D пересечения диагоналей, если длина стороны OA равна 8,3, а длина стороны OB равна 9,5.
A(
;
);
O(
;
);
B(
;
);
C(
;
);
D(
;
).
КМ и КН отрезок касательных проведенных из точки К к окружности с центром О.Найти КМ иКН если ОК=12 и угол МОН=120 градусам.
№2
Диагональ ромба ABCD пересекаются в точке О.Доказать что прямая ВD касается окружности с центром А и радиусом ОС
1. Отрезки касательных, проведенных из одной точки, равны, т. е. КМ=КН
КО - биссектриса угла МОН, след-но тр-ники КОМ и КОН - прямоугольные, с углами= 90, 60, 30 град.
ОМ=ОН=6см. , КМ=КН=sqrt(144-36)=7sqrt2
2. Диагонали ромба точкой пересечения делятся пополам, т. е. АО=ОС, отсюда диагональ ромба ВD касается окружности с центром А и радиусом ОС
2. Половиной гипотенузы строим окружность.
3. Берем произвольную точку К и проводим через О луч до пересечения с окружностью L. KL будет диаметром и одновременно гипотенузой искомого треугольника.
4. Далее берем циркулем наш катет. Ставим остриё в т.К и делаем засечку на нашей окружности т.М. КМ это наш катет.
Полученный треугольник прямоугольный с искомыми катетом и гипотенузой.