В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
lukianova201720
lukianova201720
03.02.2022 22:27 •  Геометрия

V - корень
1.
Треугольник ABC
Угол A = 60°
AB = V3 см
AC = 2V5 см
Найти BC
2.
ABCD - паралелограмм
Угол A = 60°
CD = V3 см
BC = 4см
Найти BD

Показать ответ
Ответ:
Triana
Triana
04.05.2022 12:40

При пересечении двух прямых образуется 4 угла, обозначим через 1,2,3,4 по часовой стрелке.

1) угол 1 + угол 2 не может равняться 70 градуас, т.к. они смежные, значит угол 1+угол 3 = 70 градусов, т.к. эти углы вертикальные, то угол 1 = 70:2=35 градусов. Тогда угол 2 = 180-угол 1 (по свойству смежных углов), угол 2 = 180-35=145 градусов.

ответ: 35 и 145.

2) Пусть угол 1 = 3 угла 2. Так как эти углы смежные, то по свойству смежных углов: угол 1 + угол 2 = 180,

3 угла 2 + угол 2 = 180

4 угла 2 = 180,

угол 2 = 45 градусов.

Тогда угол 1 равен 180-45=135

ответ 45 и 135.

3) угол 1 = угол 2 -35, тогда угол 2 - 35 + угол 2 = 180

2 угла 2 = 215

угол 2 = 107 градусов 30 минут,

угол 1 = 180 градусов - 107 градусов 30 минут = 72 градуса 30 минут

0,0(0 оценок)
Ответ:
dibalabagdasar
dibalabagdasar
07.09.2020 02:41

– катеты; AB=c – гипотенуза.

Также в прямоугольном треугольнике сумма острых углов равна : .

Для прямоугольного треугольника также верна теорема Пифагора: .

Введём теперь понятие синуса, косинуса и тангенса острого угла прямоугольного треугольника.

Определение синуса, косинуса и тангенса острого угла прямоугольного треугольника

Определение

Синусом острого угла прямоугольного треугольника называется отношение противолежащего этому углу катета к гипотенузе.

, .

Определение

Косинусом острого угла прямоугольного треугольника называется отношение прилежащего к этому углу катета к гипотенузе.

, .

Определение

Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего этому углу катета к прилежащему катету.

, .

Связь катетов и гипотенузы, двух катетов через тригонометрические функции угла

С введённых понятий можно находить катеты или гипотенузу.

Например, из формулы: . Аналогично: .

Также можно получить формулу для связи длин двух катетов: .

Связь синуса и косинуса двух острых углов прямоугольного треугольника

При решении задач очень важно знать соотношения между синусом, косинусом и тангенсом острого угла прямоугольного треугольника.

Рассмотрим следующие две формулы: . Так как сумма острых углов прямоугольного треугольника равна , то формула приобретает следующий вид:

Аналогично получаем: . Так как сумма острых углов прямоугольного треугольника равна , то формула приобретает следующий вид:

Формула, связывающая тангенс с синусом и косинусом

Докажем теперь важную формулу, связывающую тангенс с синусом и косинусом:

Доказательство независимости значения тригонометрических функций от размеров треугольника

Доказательство

Запишем определение синуса и косинуса острого угла прямоугольного треугольника: , . Тогда: . Доказано.

Аналогично: .

Рассмотрим следующую важную задачу.

Задача

Даны прямоугольные треугольники . Кроме того, .

Доказать:.

Доказательство

(так как оба треугольника прямоугольные с равными острыми углами). Значит, выполняется следующее соотношение: .

Отсюда получаем: .

.

.

Доказано.

Вывод: синус, косинус и тангенс не зависят от треугольника, а зависят только от угла.

Основное тригонометрическое тождество

Сформулируем и докажем одну из важнейших теорем, связывающих синус и косинус острого угла прямоугольного треугольника, – основное тригонометрическое тождество.

Основное тригонометрическое тождество: .

Примечание:

Доказательство

, тогда:  (при доказательстве мы пользовались теоремой Пифагора: ).

Доказано.

Рассмотрим пример, иллюстрирующий связь тригонометрических функций.

Решение примера

Дано:  – прямоугольный (), .

Найти:

Решение

Воспользуемся основным тригонометрическим тождеством: . Подставим в него известное нам значение синуса: . Отсюда: . Так как косинус, по определению, – это отношение катета к гипотенузе, то он может быть только положительным, поэтому: .

Найдём теперь тангенс угла, пользуясь формулой: .

ответ: .

На этом уроке мы рассмотрели понятия синуса, косинуса и тангенса острого угла прямоугольного треугольника, вывели некоторые их свойства и формулы связи между этими величинами. На следующем уроке мы познакомимся со значениями синуса, косинуса и тангенса для некоторых конкретных значений углов.

Список литературы

Александров А.Д. и др. Геометрия, 8 класс. – М.: Просвещение, 2006.

Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия, 8 класс. – М.: Просвещение, 2011.

Мерзляк А.Г., Полонский В.Б., Якир С.М. Геометрия, 8 класс. – М.: ВЕНТАНА-ГРАФ, 2009.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Фестиваль педагогических идей "Открытый урок" (Источник).

Xvatit.com (Источник).

Egesdam.ru (Источник).

Домашнее задание

№ 133(а-г), 134(а-г), Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия, 8 класс. – М.: Просвещение, 2011.

Найдите синус, косинус и тангенс наименьшего угла египетского треугольника.

Найдите косинус и тангенс острого угла прямоугольного треугольника, синус которого равен .

Связь числа и геометрии. Часть 1. Измерения в геометрии. Свойства фигур

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота