По определению хорда МР и диаметр КЕ - отрезки, соединяющие точки окружности. Следовательно, они могут образовать искомый угол только пересекаясь внутри окружности, имея одну общую точку, например, Н. КЕ - диаметр, значит дуга КРЕ=180°. Дуга КРЕ - это сумма дуг КР и РЕ, причем дуга РЕ=0,8*КР (дано). Тогда КР+РЕ=1,8*КР=180°. Отсюда КР=100°, а РЕ=80°. Вписанный угол КЕМ равен половине градусной меры дуги МК, на которую он опирается, то есть <KЕM=13°. Вписанный угол ЕМР, опирающийся на дугу РЕ, равен 40°. Тогда в треугольнике НМЕ (Н - точка пересечения хорды и диаметра), угол МНЕ (искомый угол) равен 180°-13°-40°=127°. ответ: 127°
(Обозначения: E- середина AB, AF - высота к стороне BC, BD - медиана к стороне AC) 1) BD - медиана, высота и биссектриса (т.к. AB=BC), значит, AD=DC=5 В треугольнике ABD BD=√(AB∧2+AD∧2)=√(169-25)=12 BM=2/3 BD, BD=8 2) В треугольнике ABD AD/AB=O1D/O1B=5/13 O1B=13/18 BD=26/3 3 )ΔABD≈ΔOBE AB/BO=BD/BE 13/BO=12/6.5 (BE=AE=13/2=6.5) BO=(6.5*13)/12=169/24 4)cos C=DC/BC=5/13 В треугольнике AFC cos C=FC/AC⇒AC*5/13=50/13 BF=BC-CF=13-50/13=50/13 ΔABD≈ΔHBF; AB/BH=BD/BF⇒BH=(13*119)/13*12=119/12. P.S.(≈ - подобие треугольников)
КЕ - диаметр, значит дуга КРЕ=180°. Дуга КРЕ - это сумма дуг КР и РЕ, причем дуга РЕ=0,8*КР (дано). Тогда КР+РЕ=1,8*КР=180°. Отсюда КР=100°, а РЕ=80°. Вписанный угол КЕМ равен половине градусной меры дуги МК, на которую он опирается, то есть <KЕM=13°. Вписанный угол ЕМР, опирающийся на дугу РЕ, равен 40°. Тогда в треугольнике НМЕ (Н - точка пересечения хорды и диаметра), угол МНЕ (искомый угол) равен 180°-13°-40°=127°.
ответ: 127°
1) BD - медиана, высота и биссектриса (т.к. AB=BC), значит, AD=DC=5
В треугольнике ABD BD=√(AB∧2+AD∧2)=√(169-25)=12
BM=2/3 BD, BD=8
2) В треугольнике ABD AD/AB=O1D/O1B=5/13
O1B=13/18 BD=26/3
3 )ΔABD≈ΔOBE
AB/BO=BD/BE
13/BO=12/6.5 (BE=AE=13/2=6.5)
BO=(6.5*13)/12=169/24
4)cos C=DC/BC=5/13
В треугольнике AFC cos C=FC/AC⇒AC*5/13=50/13
BF=BC-CF=13-50/13=50/13
ΔABD≈ΔHBF; AB/BH=BD/BF⇒BH=(13*119)/13*12=119/12.
P.S.(≈ - подобие треугольников)