Пусть основание равно Х, тогда боковая сторона равна (Х-9). В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна √[(Х-9)²-(X/2)²]=√(15²-12²)=9см. ответ: высота, проведенная к основанию, равна 9см.
В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна
√[(Х-9)²-(X/2)²]=√(15²-12²)=9см.
ответ: высота, проведенная к основанию, равна 9см.
Точка F находится на расстоянии от плоскости квадрата 7 см
Объяснение:
L=9см
а=8см
Точка F находится на равном расстоянии от вершин квадрата ABCD.
Значит точка F перпендикулярно к точке пересечения диагоналей квадрата( к центру).
находим длины диагоналей квадрата по формуле
d=a√2 где а сторона квадрата
а=AB=BC=CD=DA=8см
d=a√2=8√2 см
так как точка F находится перпендикулярно к центру квадрата,
расстояние от центра от каждой вершины равна половине диагонали
d/2=8√2 /2=4√2 см
точка F находится на некоторой высоте над плоскостью квадрата, обозначим как h.
Тогда по теореме Пифагора
h=√L²-(d/2)²=√9² - (4√2)²=√81 - 32=√49=7см