В квадрат вписана окружность. Доказать, что сумма квадратов расстояний от любой точки окружности до сторон квадрата не зависит от выбора точки на окружности. Найти эту сумму, если сторона квадрата равна 2a
Рисунка в приложении к задаче нет, но это не беда.
Итак, пусть дан произвольный ΔАВС. Точка О - центр описанной около этого треугольника окружности.
Как определить расположение точки О?
1) Дело в том, что центр описанной около треугольника окружности - это точка пересечения серединных перпендикуляров к сторонам треугольника.2) Для подтверждения нашей гипотезы проведём серединные перпендикуляры. Вуаля, они пересекаются в точке О, которая по условию и является центром описанной окружности. То есть, наша гипотеза верна.
Рисунка в приложении к задаче нет, но это не беда.
Итак, пусть дан произвольный ΔАВС. Точка О - центр описанной около этого треугольника окружности.Как определить расположение точки О?
1) Дело в том, что центр описанной около треугольника окружности - это точка пересечения серединных перпендикуляров к сторонам треугольника.2) Для подтверждения нашей гипотезы проведём серединные перпендикуляры. Вуаля, они пересекаются в точке О, которая по условию и является центром описанной окружности. То есть, наша гипотеза верна.Дано:
KB ∩ AM = S.
AB = KM
AB || KM
Доказать:
S - середина KB и AM.
Решение.
ЕСЛИ ПРИ ПЕРЕСЕЧЕНИИ 2 ПРЯМЫХ СЕКУЩЕЙ НАКРЕСТ ЛЕЖАЩИЕ УГЛЫ РАВНЫ, ТО ПРЯМЫЕ ПАРАЛЛЕЛЬНЫ.Рассмотрим △KSM и △BSA:
AB = KM
Т.к. AB || KM => ∠B = ∠K т.к. они накрест лежащие.В данном случае, действует теорема, которая написана заглавными буквами вверху, только обратная:
ЕСЛИ ДВЕ ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ ПЕРЕСЕЧЕНЫ СЕКУЩЕЙ, ТО НАКРЕСТ ЛЕЖАЩИЕ УГЛЫ РАВНЫ
∠A = ∠M, т.к. они накрест лежащие.
=> △KSM = △ASB, по 2 признаку равенства треугольников.
Т.к. △KSM = △ASB => S - середина KB и AM
Ч.Т.Д.