Обозначим трапецию АВСD(смотри рисунок). Используем свойство трапеции R=mn. Далее находим площадь половины трапеции S pcdf. Чтобы были понятны дальнейшие действия отметим, что треугольники POC и LOC равны по катету (R) и гипотенузе OC. Отсюда LC=PC=n. Аналогично , равны попарно и треугольники LOD и FOD, а также AOF и AOK, BOK и BOP. Отсюда также следует и то, что треугольники AOB и COD, всегда будут прямоугольными, углы AOB и COD равны в 90градусов. Поскольку сумма углов OCD и ODC равна 90градусов. Это следует из того, что сумма углов при CD=180 градусов, а OC и OD биссектрисы. Ну а дальше, находим площадь второй половины трапеции. Для этого находим АК из подобия прямоугольных треугольников. И суммируем
1. Фигура на плоскости, все точки которой обладают одним и тем же свойством, а ни одна из других точек плоскости этим свойством не обладает, называется геометрическим местом точек (г. м. т.) данного свойства на плоскости.
2. Биссектриса угла есть г. м. т., каждая из которых одинаково удалена от обеих сторон угла.
3. Серединный перпендикуляр— прямая, перпендикулярная данному отрезку и проходящая через его середину.
4. Перпендикуляр через середину отрезка есть г. м. т., каждая из которых одинаково удалена от концов отрезка.
1. Фигура на плоскости, все точки которой обладают одним и тем же свойством, а ни одна из других точек плоскости этим свойством не обладает, называется геометрическим местом точек (г. м. т.) данного свойства на плоскости.
2. Биссектриса угла есть г. м. т., каждая из которых одинаково удалена от обеих сторон угла.
3. Серединный перпендикуляр— прямая, перпендикулярная данному отрезку и проходящая через его середину.
4. Перпендикуляр через середину отрезка есть г. м. т., каждая из которых одинаково удалена от концов отрезка.