Если коэффициент пропорциональности х, то меньший угол 2х, а больший 3х. Их сумма 2х+3х=90, откуда х=90/5; х= 18, значит, больший угол равен 18°*3=54°
ответ 54°
2. Т.к. АС=ВС, то по определению равнобедренного треугольника ΔАВС равнобедренный с основанием АВ, тогда углы при основании АВ равны, угол В равен 40°, а угол С равен 180°-(∠А+∠В)=180°-(40°+40°)=100°
ответ 100°
3. Углы А и В в ΔАВС равны по свойству углов при основании в равнобедренном треугольнике. Поэтому угол А равен
Смотри, рисуешь прямоугольную трапецию, в ней прорисовываешь высоту(СО) . Нам известно, что меньшее основание =6, а большее =22. (Меньшее основание обозначим ВС, а большее AD.) Если ты нарисуешь высоту, то у тебя получится прямоугольник и треугольник. Сначала рассмотрим прямоугольник: У этой фигуры стороны попарно равны, значит вс=ad=6 см. Но известно, что AD=22, значит ОD=16. ДАЛЕЕ по теорему Пифагора рассчитаем сторону треугольника СЕ. Так как СЕ - гипотенуза то она равна 12 ( 16*16+20*20=корень из 144=12. Теперь нам известна высота, и мы можем найти площадь трапеции. Площадь трапеции= сумма оснований разделить на два и умножить на высоту= (6+22/2)*12=168 см в квадрате.
Если коэффициент пропорциональности х, то меньший угол 2х, а больший 3х. Их сумма 2х+3х=90, откуда х=90/5; х= 18, значит, больший угол равен 18°*3=54°
ответ 54°
2. Т.к. АС=ВС, то по определению равнобедренного треугольника ΔАВС равнобедренный с основанием АВ, тогда углы при основании АВ равны, угол В равен 40°, а угол С равен 180°-(∠А+∠В)=180°-(40°+40°)=100°
ответ 100°
3. Углы А и В в ΔАВС равны по свойству углов при основании в равнобедренном треугольнике. Поэтому угол А равен
(180град. -120град.)/2=30 град.
ответ 30 градусов
Но известно, что AD=22, значит ОD=16.
ДАЛЕЕ по теорему Пифагора рассчитаем сторону треугольника СЕ. Так как СЕ - гипотенуза то она равна 12 ( 16*16+20*20=корень из 144=12.
Теперь нам известна высота, и мы можем найти площадь трапеции.
Площадь трапеции= сумма оснований разделить на два и умножить на высоту= (6+22/2)*12=168 см в квадрате.