Теорема . три высоты любого треугольника пересекаются в одной точке. доказательство: пусть abc - данный треугольник . пусть прямые, содержащие высоты ap и bq треугольника abc пересекаются в точке o. проведем через точку a прямую, параллельную отрезку bc, через точку b прямую, параллельную отрезку ac, а через точку c - прямую, параллельную отрезку ab. все эти прямые попарно пересекаются. пусть точка пересечения прямых, параллельных сторонам ac и bc - точка m, точка пересечения прямых, параллельных сторонам ab и bc - точка l, а прямых, параллельным ab и ac - точка k. точки klm не лежат на одной прямой, (иначе бы прямая ml совпадала бы с прямой mk, а значит, прямая bc была бы параллельна прямой ac, или совпадала бы с ней, то есть точки a, b и c лежали бы на одной прямой, что противоречит определению треугольника) . итак, точки k, l, m составляют треугольник. ma параллельно bc, и mb параллельно ac по построению. а значит, четырёхугольник macb - параллелограмм. следовательно, ma = bc, mb = ac. аналогично al = bc = ma, bk = ac = mb, kc = ab = cl. значит, ap и bq - серединные перпендикуляры к сторонам треугольника klm. они пересекаются в точке o, а значит, co - тоже срединный перпендикуляр. co перпендикулярно kl, kl параллельно ab, а значит co перпендикулярно ab. пусть r - точка пересечения ab и cq. тогда cr перпендикулярно ab, то есть cr - это высота треугольника abc. точка o принадлежит всем прямым, содержащим высоты треугольника abc. значит, прямые, содержащие высоты этого треугольника пересекаются в одной точке. что и требовалось доказать. может правильно )
Площадь полной поверхности параллелепипеда равна сумме площадей всех его граней. В прямоугольном параллелепипеде все грани - прямоугольники, причем противоположные грани равны. Найдем по Пифагору диагональ основания.
АС = √(AD² + DC²) = √(6² + 3²) = √45 см. Тогда высота параллелепипеда по Пифагору:
S полн = 72 см².
Объяснение:
Площадь полной поверхности параллелепипеда равна сумме площадей всех его граней. В прямоугольном параллелепипеде все грани - прямоугольники, причем противоположные грани равны. Найдем по Пифагору диагональ основания.
АС = √(AD² + DC²) = √(6² + 3²) = √45 см. Тогда высота параллелепипеда по Пифагору:
СС1 = √(AС1² + АC²) = √(49 + 45) = 2 см.
Sabcd = 6·3 = 18 см². Sdd1c1c = 3·2 = 6см². Saa1d1d = 6·2 = 12см².
тогда Sполн = 2·Sabcd + 2·Sdd1с1с +2·Saa1d1d или
Sполн = 2·18 + 2·6 +2·12 = 36 + 12 +24 = 72 см².