В неравнобедренном остроугольном треугольнике ABC угол А равен 60°. Его высоты BB и СС, пересекаются в точке Н. Рассмотрим 7 величин:
1. AB+AC,
2. BB + CCi,
3. 2 BC,
4. BC + С, В1 + BIC,
5. BC + В,С,
6. BC + CIC,
7. BH + CH,
Упорядочите их в порядке убывания.
В качестве ответа введите в нужном порядке числа от 1 до 7 через пробел (например, «1 7 2 6 3 5 4»),
Касательные к окружности, проведённые из одной точки, равны.
Обозначим равные отрезки как показано на рисунке через x, y и z.
AB=x+z, AC=x+y.
По теореме биссектрис АС/АВ=СД/ВД,
(x+y)/(x+z)=y/z,
xz+yz=xy+yz,
xz=xy,
z=y.
СД/ВД=у/z=1, значит АС/АВ=1, значит АВ=АС.
Треугольник АВС - равнобедренный, в нём АД - высота и биссектриса, центр вписанной окружности лежит на биссектрисе, вписанная окружность касается стороны ВС в точке Д, но это не значит, что АВ=ВС. Это равенство может быть только если тр-ник АВС правильный, но это лишь частный случай.
Не доказано.
трапецию АDEC .Площадь треугольника СDE = 67.
Пусть DE - основание этого треугольника.Проведём перпендикуляр DK к стороне DE. DK будет являться перпендикуляром и к стороне АС треугольника АВС.,так как средняя линия треугольника параллельна основанию АС и равна её половине .DE=1/2*AC
S(CDE)=1/2*DE*h.
1/2* DE*h=67 тогда DE*h= 67*2 DE*h=134
S(ABC)=S(DBE)+S(ADEC)
S(DBE)=1/2*DE*h=67 (Средняя линия делит высоту треугольника АВС пополам. Поэтому высота треугольника DBE = высоте треугольникаDCE.
S(ADEC)=1/2*(AC+DE)*DK=1/2*(DE+2DE)*h=3/2DE*h=3/2*134=201
AC=2*DE. Высота трапеции равна высоте треугольника DEC.
S(ABC)=S(DBE)+S(ADEC)=67+201=268