В неравнобедренном остроугольном треугольнике ABC угол A равен 60∘. Его высоты BB1 и CC1 пересекаются в точке H. Рассмотрим 7 величин: AB+AC, BB1+CC1, 2BC, BC1+C1B1+B1C, BC1+B1C, BC1+C1C, BH+CH. Упорядочите их в порядке убывания. В качестве ответа введите в нужном порядке числа от 1 до 7 через пробел (например, «1 7 2 6 3 5 4»).
Докажем второй пункт. Как известно, высота равнобедренного треугольника совпадает с его медианой и биссектрисой и является его осью симметрии. Также, любые два равнобедренных треугольника, построенные на одном основании, обладают общей осью симметрии и, как следствие, общей высотой/медианой/биссектрисой. Тогда получаем, что KA⊂KC и все три точки лежат на KC.
Это автоматически доказывает первый пункт, т.к. непонятные ∠ACB и ∠ACD превращаются в углы при биссектрисе ∠KCB=∠KCD, которые равны между собой.