В одному мішку 25 кілограмів цукру а в другому 20 кілограмів якщо перший мішок досипати до повного цукром з другого мішка то другий буде заповнений на 1/6 якщо другий мішок досипати до повного цукро з першого мішка то перший буде заповнений на 3/8 скільки цукру уміститься у кожному мішку
Очень нада ❤️=)
Рассмотрим треугольник АВС. Мы знаем, что:
- у ∠ САВ = 100°
- т. к. треугольник равнобедренный, то АС = АВ и ∠ АСВ = ∠ АВС.
- в Δ проведена биссектриса СМ. Она, по определению биссектрис, делит ∠ АСВ пополам, значит АСМ = МСВ.
Необходимо найти ∠ АМС.
Для начала найдём, чему равен ∠ АСВ. Сумма всех ∠ треугольника = 180°. Следовательно: ∠ АСВ + ∠ АВС = 180° - 100° = 80°. Т. к. ∠ АСВ = ∠ АВС, то 80° / 2 = 40°.
Теперь найдём ∠ АСМ. Т. к. биссектриса СМ делит ∠ пополам, то ∠ АСМ = ∠ МСВ = 40° / 2 = 20°.
В Δ АМС нетрудно найти необходимый ∠ АМС. Сумма всех углов треугольника равна 180°, значит ∠ АМС = 180° - (100° + 20°) = 180° - 120° = 60°.
ответ: 60°
• Гипотенуза прямоугольного треугольника больше каждого из катетов. a < c > b
• Сумма острых углов прямоугольного треугольника 180°-90°=90°
• Две высоты прямоугольного треугольника совпадают с его катетами.
• Высота прямоугольного треугольника, проведенная к гипотенузе, делит его на подобные треугольники.
• Если катет, лежит против угла 30°, он равен половине гипотенузы.
• Медиана прямоугольного треугольника, проведенная из вершины прямого угла на гипотенузу, равна половине гипотенузы и является радиусом описанной около этого треугольника окружности.
• Центр описанной окружности прямоугольного треугольника лежит в середине гипотенузы.
• В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов (теорема Пифагора):
c²=a²+b²
• Высота, проведенная к гипотенузе, - есть среднее пропорциональное между отрезками, на которые она делит гипотенузу ( т.е. между проекциями катетов на гипотенузу)
• Катет есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.