Пусть катеты равны а и b, гипотенуза равна с и высота, проведённая из вершины прямого угла, равна h.
Высота прямоугольного треугольника, проведённая из вершина прямого угла к гипотенузе, равна произведению катетов, делённому на гипотенузу прямоугольного треугольника.
Гипотенузу треугольника найдём по теореме Пифагора (сумма квадратов катетов равна квадрату гипотенузы) :
c² = a² + b² = 5² + 12² = 25 + 144 = 169
c = √c² = √169 = 13 см.
Тогда, по выше сказанному, h равно :
h = ab / c = 5 см*12 см / 13 см = 60 см²/13 см = 4 8/13 см.
Вообщем. Из всех данных рассмотрим треугольник CDB. Он прямоугольный, его сторона DB=AD, так как CD делит AB пополам, от сюда следует, что DB равно 6 см. Теперь найдём гипотенузу этого треугольника. Угол DCB равен 30 градусам, так написано в дано. Вспоминаем волшебную теоремку, что катет лежащий на против угла в 30 градусов равен половине гипотенузы. У нас катет на против этого угла равен 6 см, значит гипотенуза равна 12 см, а от сюда мы можем посчитать периметр, так, как противолежащие стороны параллелограмма равны, получается 12+12+12+12=48. ответ: Р=48 см.
Пусть катеты равны а и b, гипотенуза равна с и высота, проведённая из вершины прямого угла, равна h.
Высота прямоугольного треугольника, проведённая из вершина прямого угла к гипотенузе, равна произведению катетов, делённому на гипотенузу прямоугольного треугольника.Гипотенузу треугольника найдём по теореме Пифагора (сумма квадратов катетов равна квадрату гипотенузы) :
c² = a² + b² = 5² + 12² = 25 + 144 = 169
c = √c² = √169 = 13 см.
Тогда, по выше сказанному, h равно :
h = ab / c = 5 см*12 см / 13 см = 60 см²/13 см = 4 8/13 см.
4 8/13 см.
ответ: Р=48 см.