Центром окружности, описанной около треугольника, является точка пересечения его срединных перпендикуляров. В правильном треугольнике центры описанной и вписанной окружностей совпадают. а срединные перпендикуляры – его высоты ( биссектрисы, медианы). Медианы точкой пересечения делятся в отношении 2:1, считая от вершины. Следовательно, радиус R окружности, описанной около правильного треугольника, равен 2/3 его медианы ( высоты), а радиус r вписанной окружности равен 1/3 медианы (высоты).
r=R/2=6:2=3 см.
————————
Задачи на правильные треугольники и окружности, вписанные и описанные около них, встречаются часто. поэтому полезно запомнить это свойство, когда требуется решение без лишних вычислений: r=R/2=6:2=3 см.
Отрезки касательных, проведенных из одной точки, равны, а центры окружностей лежат на биссектрисе угла ASB. Тогда SK - биссектриса и высота равнобедренного треугольника ASB т.е. SK⊥AB. Аналогично, SН⊥ CD, тогда КН - искомое расстояние между прямыми АВ и CD.
ответ: 3 см
Объяснение (очень подробно):
Центром окружности, описанной около треугольника, является точка пересечения его срединных перпендикуляров. В правильном треугольнике центры описанной и вписанной окружностей совпадают. а срединные перпендикуляры – его высоты ( биссектрисы, медианы). Медианы точкой пересечения делятся в отношении 2:1, считая от вершины. Следовательно, радиус R окружности, описанной около правильного треугольника, равен 2/3 его медианы ( высоты), а радиус r вписанной окружности равен 1/3 медианы (высоты).
r=R/2=6:2=3 см.
————————
Задачи на правильные треугольники и окружности, вписанные и описанные около них, встречаются часто. поэтому полезно запомнить это свойство, когда требуется решение без лишних вычислений: r=R/2=6:2=3 см.
Отрезки касательных, проведенных из одной точки, равны, а центры окружностей лежат на биссектрисе угла ASB. Тогда SK - биссектриса и высота равнобедренного треугольника ASB т.е. SK⊥AB. Аналогично, SН⊥ CD, тогда КН - искомое расстояние между прямыми АВ и CD.
Радиус, проведенный в точку касания, перпендикулярен касательной, значит ∠MBS = ∠ODS = 90°.
Угол при вершине S общий для треугольников MBS и ODS, значит треугольники подобны по двум углам.
SM : SO = MB : OD = 36 : 45 = 4 : 5
SO = SM + MO, а МО = 36 + 45 = 81
SM : (SM + 81) = 4 : 5
5SM = 4SM + 324
SM = 324
ΔSBM: ∠SBM = 90°
cos∠SMB = BM / SM = 36 / 324 = 1/9
ΔMBK: ∠MKB = 90°
KM = MB · cos∠SMB = 36 · 1/9 = 4
∠SOD = ∠SMB так как треугольники подобны.
ΔODH: ∠OHD = 90°
OH = OD · cos∠SOD = 45 · 1/9 = 5
KH = KM + MO - OH
KH = 4 + 36 + 45 - 5 = 80