В окружности центральной точке О проведен диаметр СК = 18 см и хорда АВ перпендикулярна СК и равна радиусу данной окружности Диаметр СК и хорда АВ пересекаються в точке Р . a) ввполни чертеж по условию щадачи .b) Найдите радиус окружность . c) Найдите длину отрезка АР d) Вычислите пиримитр треугольника .
1.) Радиус цилиндра 2 см, а диагональ осевого сечения 5 см. Найдите:
a) Высоту цилиндра
Прямоугольный треугольник. Т. Пифагора
Н² = 5² - 4² = 9, ⇒ Н = 3
б) Площадь осевого сечения
Осевое сечение - прямоугольник
S = 3*4 = 12
в) Диаметр основания
Диаметр основания = 2 радиуса = 4
2.) Образующая конуса равна 6 м и наклонена к плоскости основания под углом 60 градусов. Найдите площадь основания конуса, площадь осевого сечения.
Прямоугольный треугольник. Гипотенуза = 6, катет = радиусу лежит против угла 30, значит, R = 3
высота конуса = √(36 - 9) = √27 = 3√3
площадь основания конуса = S кр = πR² = π*9= 9π
Осевое сечение = треугольник, котором боковые стороны = 6, основание = 6 и высота = 3√3
S = 1/2*6*6*3√3 = 54√3
3.) Найдите площадь большого круга и длину экватора шара, если его радиус 2 м.
S= πR² = π*4 = 4π(м²)
C = 2πR = 2π*2 = 4π(
ответ: S2 уменьшилась на 43,75% ; V2 уменьшился на 57,875% Объяснение:
25%=25/100=1/4 - на столько уменьшится каждая сторона и станет 1-1/4=3/4 от исходной.
При уменьшении всех сторон параллелепипеда уменьшаются и все его линейные размеры, т.е. высота самого параллелепипеда и его сторон. Получится фигура, подобная исходной с коэффициентом подобия k=3/4:1=3/4.
Отношение площадей подобных фигур равно квадрату коэффициента их подобия.
Примем площадь исходной фигуры равной Ѕ1, а площадь уменьшенной фигуры Ѕ2.
Тогда Ѕ2:Ѕ1=k^2=(3/4)^2=9/16
S2-S1=16/16-9/16=7/16 ( на столько уменьшилась площадь поверхности)
В процентном выражении это будет 7•100/16=43,75%
Отношение объемов подобных фигур равно кубу коэффициента их подобия:
Если объем исходной фигуры V1 и уменьшенной V2, то V2:V1=k^3=27/64 =>
V1-V2=64/64-27/64=37/64 ( на столько уменьшился объем.
В процентном выражении это 37•100:64=57,875%