Центр вписанной в угол окружности лежит на его биссектрисе. Окружность радиуса 8 - вневписанная, касается сторон двух углов - А и С, ее центр лежит на пересечении биссектрис этих углов, смежных с углами А и С ∆ АВС соответственно,⇒ СО - биссектриса и делит угол НСК пополам. . Центр окружности, вписанной в треугольник АВС, лежит в точке пересечения биссектрис. ВН и СО₁- биссектрисы. СО₁ делит угол ВСН пополам. АСК - развернутый угол и равен 180º Сумма половин углов АСН и ОСН равна половине развернутого угла. Угол ОСО₁=180°:2=90°⇒ ∆ ОСО₁ - прямоугольный с прямым углом С. АН - высота и медиана равнобедренного треугольника АВС, следовательно, делит основание АС на два равных отрезка: СН=АН=6. СН ⊥ АН⇒ является высотой треугольника ОСО₁.
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой;⇒
СО - биссектриса и делит угол НСК пополам. .
Центр окружности, вписанной в треугольник АВС, лежит в точке пересечения биссектрис. ВН и СО₁- биссектрисы.
СО₁ делит угол ВСН пополам.
АСК - развернутый угол и равен 180º
Сумма половин углов АСН и ОСН равна половине развернутого угла.
Угол ОСО₁=180°:2=90°⇒
∆ ОСО₁ - прямоугольный с прямым углом С.
АН - высота и медиана равнобедренного треугольника АВС, следовательно, делит основание АС на два равных отрезка:
СН=АН=6.
СН ⊥ АН⇒ является высотой треугольника ОСО₁.
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой;⇒
СН²=ОН•HO₁
36=8 HO₁
HO₁=36/8=4,5 (ед. длины)
88 или 80
Объяснение:

1
Избавься от ограничений
ПОПРОБУЙ ЗНАНИЯ ПЛЮС СЕГОДНЯ
Eduard2019
27.10.2019
Геометрия
5 - 9 классы
ответ дан • проверенный экспертом
Найти периметр прямоугольника ABCD, если биссектриса угла A делит сторону BC на отрезки 16 и
1
СМОТРЕТЬ ОТВЕТ
Войди чтобы добавить комментарий
ответ, проверенный экспертом
5,0/5
3

KuOV
главный мозг
4.8 тыс. ответов
13.3 млн пользователей, получивших
ответ: 88 см или 80 см
Объяснение:
∠BAK = ∠DAK, так как АК биссектриса угла А,
∠DAK = ∠BKA как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АК, ⇒
∠ВАК = ∠ВКА, значит ΔВАК равнобедренный,
1) Если ВК = 16 см, а КС = 12 см, то
АВ = ВК = 16 см
ВС = 16 + 12 = 28 см
Pabcd = 2(AB + BC) = 2 · (16 + 28) = 2 · 44 = 88 см
2) Если ВК = 12 см, а КС = 16 см, то
АВ = ВК = 12 см
ВС = 12 + 16 = 28 см
Pabcd = 2(AB + BC) = 2 · (12 + 28) = 2 · 40 = 80 см