В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Kirill316111
Kirill316111
18.08.2021 09:42 •  Геометрия

В окружности с центром в т. О хорда АМ образует с касательной МК угол 60 градусов.Вычислите велечину угла АМО

Показать ответ
Ответ:
strizhnevan
strizhnevan
28.04.2021 16:04
1) Бічна грань - прямокутник.
ЇЇ розміри -dsin α*dcos α = d²sin2α/2.
Площа бічної поверхні призми складає з 3 граней, тоді Sбок = (d²sin2α/2)*3 = 3d²sin2α/2.
2) Якщо кожне ребро дорівнює √2 см, то бічні грані - рівносторонні трикутники. Апофема дорівнює √2*cos 30 = √2*√3/2.
Площа бічної поверхні становить 4*(1/2)*√2*√2*√3/2. = 2√3,
Площа основи - (√2)² = 2.
Тоді повна поверхня дорівнює 2√3 + 2 = 2(√3 + 1).
3) Якщо в основі піраміди прямокутний трикутник, а бічні ребра однакові, то вісь піраміди проходить через середину гіпотенузи основи. Ця вісь становить одночасно апофемою бічної грані.
Тобто ця бічна грань вертикальна та її висота одночасно становить висотою піраміди.
Висота піраміди дорівнює 12*cos 30 = 12*(√3/2) = 6√3.
0,0(0 оценок)
Ответ:
Татьяна72828
Татьяна72828
18.04.2023 16:16

ответ: 16 (ед. объёма)

Подробное объяснение:  

Схематический рисунок осевого сечения шара, вписанного в конус – окружность с радиусом r (радиус шара), вписанная в треугольник АВС. В данной задаче треугольник АВС правильный, его сторона равна диаметру основания конуса. ⇒ АВ=ВС=АС=d=2R

   Высота ВН треугольника АВС – высота конуса ВН=АВ•sin60°=2R•√3/2=R√3. Подставим значение высоты в формулу объёма конуса:

V(к)=πR²•h/3= πR²•R√3/3=πR³/√3 ⇒ πR³/√3=36

  Радиус r окружности, вписанной в правильный треугольник,  равен 1/3 высоты этого треугольника ( высоты конуса).  r=OH=(R√3):3=R/√3

Подставим найденное значение  радиуса шара в формулу его объёма:

V(ш)=4π(R/√3)³/3=4πR³/9√3

Из найденного объёма конуса πR³/√3=36

подставим это значение в выражение объёма шара:

V(ш)=4•36/9=16 (ед. объёма)


Найдите объем шара вписанного в конус объемом 36, если осевое сечение конуса является равносторонним
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота