В окружности с центром в точке о проведена хорда ав длина которого равна длине радиуса перпендикулярно этой хорде проведен радиус ок радиус ок и хорда ав пересекаются в точке м длина отрезка ам равна 14,2 см
а)постройте чертеж по условию задачи б)найдите длину хорды ав в)вычислите длину радиуса г)найдите периметр треугольника аов
1)
Если требуется найти синус угла между диагоналями четырехугольника, то так как средние линии взаимно перпендикулярны и параллельны диагоналям, то угол между ними равен 90 гр , откуда sin90=1
2)
Если требуется найти синус угла между отрезками, то выразив
KL=√(BD^2+AC^2)/2 KO=√(BD^2+AC^2)/4
Из теоремы синусов, в треугольнике KON, если x угол между отрезками, то
(AC)/sinx =√(BD^2+AC^2)/(2cos(x/2))
откуда sin(x/2)=(AC^2/(2*√(BD^2+AC^2)))=y тогда cos(x/2)=√(1-y^2) значит
sin(x)=2*√(y^2-y^4) = AC^2*√(4AC^2+4BD^2-AC^4)/(2*(AC^2+BD^2))
1)
Если требуется найти синус угла между диагоналями четырехугольника, то так как средние линии взаимно перпендикулярны и параллельны диагоналям, то угол между ними равен 90 гр , откуда sin90=1
2)
Если требуется найти синус угла между отрезками, то выразив
KL=√(BD^2+AC^2)/2 KO=√(BD^2+AC^2)/4
Из теоремы синусов, в треугольнике KON, если x угол между отрезками, то
(AC)/sinx =√(BD^2+AC^2)/(2cos(x/2))
откуда sin(x/2)=(AC^2/(2*√(BD^2+AC^2)))=y тогда cos(x/2)=√(1-y^2) значит
sin(x)=2*√(y^2-y^4) = AC^2*√(4AC^2+4BD^2-AC^4)/(2*(AC^2+BD^2))