В окружности с центром в точке О проведена хорда АВ, длина которой равна длине радиуса. Перпендикулярно этой хорде проведен радиус ОК. Радиус ОК и хорда АВ пересекаются в точке М. Длина отрезка АМ равна 14,2 см.
а) постройте чертеж по условию задачи;
б) найдите длину хорды АВ;
в) вычислите длину радиуса;
г) найдите периметр треугольника АОВ.
2) с²=а²+в²⇒в²=с²-а²; в²= 8²-3²=√64-√9=√55;
3)АО= АС=[tex] \frac{1}{2} *6=3 см;
ВО=[tex] \frac{1}{2} ВD= [tex] \frac{1}{2} *8= 4 см;(рис.1)
4)пусть а=5см b =4 см с- диагональ по теореме пифагора с²=a²+b²= √25+√16=√41;
5)По формуле герона площадь равна
p - полупериметр, a, b, c - стороны(рис.2);
6)Рисуем трапецию АВСД
ВС = 6 см
АD = 14 см
АВ = СD = 5 см
Из вершины В опускаем высоту ВК.
АК = (АD - ВС) / 2 = (14 - 6) / 2 = 4 см
По теореме Пифагора высота
ВК = √AB² - √AK² = √(5² - 4²) = 3 см
Площадь
S = (АD + ВС) * ВК / 2 = (14 + 6) * 3 / 2 = 30 кв. см