R = 3\sqrt{2}3
2
м
S = 36 м2
Объяснение:
R - радиус описанной вокруг квадрата окружности. По свойству радиуса описанной около квадрата окружности, радиус равен половине диагонали квадрата.
Рассмотрим ΔHEF: < HEF = 90^{0}90
0
, HE = 6 м = EF. По теореме Пифагора найдем гипотенузу HF:
\begin{gathered}HF^{2} = HE^{2} + EF^{2} = 6^{2} + 6^{2} = 36 + 36 = 72\\HF = \sqrt{72} = \sqrt{2*36} = 6\sqrt{2}\end{gathered}
HF
=HE
+EF
=6
+6
=36+36=72
HF=
72
=
2∗36
HF также является диагональю квадрата, тогда R = HF : 2 = 6\sqrt{2} : 2 = 3\sqrt{2}6
:2=3
Площадь квадрата равна квадрату его стороны, то есть нужно возвести сторону квадрата во вторую степень:
S_{HEFG} = 6^{2} = 36.S
HEFG
=36.
5)
21^2 =9^2 +x^2 -2*9*x*cos120 =>
x^2 +9x -360 =0 =>
x = -9 +√(81 +4*360) /2 =(39-9)/2 =15 (см) (x>0)
7)
теорема косинусов для △ABC и △ADC
∠B =180-∠D => cosB = -cosD
x^2 =8^2 +8^2 -2*8*8*cosB
x^2 =8^2 +10^2 -2*8*10*cosD
(x^2 -128)/(x^2 -164) = -4/5 =>
5x^2 -640 = -4x^2 +656 =>
x^2 =1296/9 => x=12 (см)
8)
AC^2 = 16^2 +6^2 -2*16*6*cos60 => AC=14
AM=MC=7
теорема косинусов для △AMB и △BMC
∠AMB =180-∠BMC => cosAMB = -cosBMC
16^2 =x^2 +7^2 -2*x*7*cosAMB
6^2 =x^2 +7^2 -2*x*7*cosBMC
(x^2 -207)/(x^2 +13) = -1 =>
2x^2 =194 => x=√97 (см)
R = 3\sqrt{2}3
2
м
S = 36 м2
Объяснение:
R - радиус описанной вокруг квадрата окружности. По свойству радиуса описанной около квадрата окружности, радиус равен половине диагонали квадрата.
Рассмотрим ΔHEF: < HEF = 90^{0}90
0
, HE = 6 м = EF. По теореме Пифагора найдем гипотенузу HF:
\begin{gathered}HF^{2} = HE^{2} + EF^{2} = 6^{2} + 6^{2} = 36 + 36 = 72\\HF = \sqrt{72} = \sqrt{2*36} = 6\sqrt{2}\end{gathered}
HF
2
=HE
2
+EF
2
=6
2
+6
2
=36+36=72
HF=
72
=
2∗36
=6
2
HF также является диагональю квадрата, тогда R = HF : 2 = 6\sqrt{2} : 2 = 3\sqrt{2}6
2
:2=3
2
Площадь квадрата равна квадрату его стороны, то есть нужно возвести сторону квадрата во вторую степень:
S_{HEFG} = 6^{2} = 36.S
HEFG
=6
2
=36.
5)
21^2 =9^2 +x^2 -2*9*x*cos120 =>
x^2 +9x -360 =0 =>
x = -9 +√(81 +4*360) /2 =(39-9)/2 =15 (см) (x>0)
7)
теорема косинусов для △ABC и △ADC
∠B =180-∠D => cosB = -cosD
x^2 =8^2 +8^2 -2*8*8*cosB
x^2 =8^2 +10^2 -2*8*10*cosD
(x^2 -128)/(x^2 -164) = -4/5 =>
5x^2 -640 = -4x^2 +656 =>
x^2 =1296/9 => x=12 (см)
8)
AC^2 = 16^2 +6^2 -2*16*6*cos60 => AC=14
AM=MC=7
теорема косинусов для △AMB и △BMC
∠AMB =180-∠BMC => cosAMB = -cosBMC
16^2 =x^2 +7^2 -2*x*7*cosAMB
6^2 =x^2 +7^2 -2*x*7*cosBMC
(x^2 -207)/(x^2 +13) = -1 =>
2x^2 =194 => x=√97 (см)