Вариант решения В параллелограмме две пары равных сторон. Пусть каждая сторона одной пары рвана х, тогда каждая сторона другой пары равна х+4 Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон. D²+d²=2a²+2b² Запишем уравнение по данным в условии значениям: 14²+12²=2х²+ 2(х+4)² 196+144=2х²+2х²+16х+32 4х²+16х-308=0 Для удобства вычисления разделим обе стороны на 4 и решим квадратное уравнение: х²+4х-77=0 D=b²-4ac=4²-4·(-77)=324 х₁=(-4+√324):2=7см х₂=(-4-√324):2=-11 ( не подходит) Стороны одной пары равны по 7 см Стороны другой пары равны по 11 см каждая Р=2*(7+11)=36см
1. ∠AOD = 72°
2. 90°, 90°, 160°
3. a = 5 см
b = 10 см
4. ∠A = ∠D = 48°
∠С = ∠В = 132°
5. BD = 8 см
Объяснение:
1. Диагонали прямоугольника равны и точкой пересечения делятся пополам.
АО = ВО = ОС = OD
ΔАВС равнобедренный с основанием АВ. Углы при основании равны:
∠АВО = ∠ВАО = 36°
∠AOD - внешний для треугольника АОВ, значит равен сумме двух внутренних, не смежных с ним:
∠AOD = ∠АВО + ∠ВАО = 36° · 2 = 72°
2. В прямоугольной трапеции два угла по 90°, так как боковая сторона перпендикулярна основаниям.
Сумма углов трапеции, прилежащих к боковой стороне, равна 180°.
Если ∠А = 20°, то
∠В = 180° - ∠А = 180° - 20° = 160°
3. Противоположные стороны параллелограмма равны.
Пусть х - одна сторона, тогда другая сторона 2х.
P = 2(a + b)
2(x + 2x) = 30
3x = 15
x = 5
a = 5 см
b = 2 · 5 = 10 см
4. Углы при основании равнобедренной трапеции равны.
Тогда ∠A = ∠D = 96 : 2 = 48°.
Сумма углов, прилежащих к боковой стороне трапеции, равна 180°.
∠В = 180° - ∠А = 180° - 48° = 132°
∠С = ∠В = 132°
5. Сумма острых углов прямоугольного треугольника равна 90°.
ΔАВМ: ∠А = 90° - 30° = 60°
Стороны ромба равны, значит ΔABD равнобедренный; угол при его вершине равен 60°, значит он равносторонний.
Тогда ВМ - его высота и медиана:
MD = AM = 4 см
AD = 8 см
BD = AD = 8 см
В параллелограмме две пары равных сторон.
Пусть каждая сторона одной пары рвана х,
тогда каждая сторона другой пары равна х+4
Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.
D²+d²=2a²+2b²
Запишем уравнение по данным в условии значениям:
14²+12²=2х²+ 2(х+4)²
196+144=2х²+2х²+16х+32
4х²+16х-308=0
Для удобства вычисления разделим обе стороны на 4 и решим квадратное уравнение:
х²+4х-77=0
D=b²-4ac=4²-4·(-77)=324
х₁=(-4+√324):2=7см
х₂=(-4-√324):2=-11 ( не подходит)
Стороны одной пары равны по 7 см
Стороны другой пары равны по 11 см каждая
Р=2*(7+11)=36см