Проекция апофемы на основание ОК = √6*√2 = √12 = 2√3. Высота треугольника основания h и высота пирамиды H равны: h = H= 3*ОК = 3*2√3 = 6√3 (по свойству медиан). Сторона основания а = h / (√3/2) = (6√3) / (√3/2) = 12 см. Площадь основания So = (1/2)*h*a = (1/2)*6√3*12 = 36√3 см². Апофема боковой грани равна А = ОК / sin 45° = (2√3) /(√2/2) = = (4√3)/√2 = 2√6 см. Площадь боковой грани Sбг = (1/2)*А*а = (1/2)*2√6*12 = 12√6. Площадь боковой поверхности пирамиды Sбок = 3*Sбг = 3*12√6 = 36√6 см². Площадь полной поверхности пирамиды S = So + Sбок = = 36√3 + 36√6 = 36(√3 + √6) = 150.5355 см².
Высота треугольника основания h и высота пирамиды H равны:
h = H= 3*ОК = 3*2√3 = 6√3 (по свойству медиан).
Сторона основания а = h / (√3/2) = (6√3) / (√3/2) = 12 см.
Площадь основания So = (1/2)*h*a = (1/2)*6√3*12 = 36√3 см².
Апофема боковой грани равна А = ОК / sin 45° = (2√3) /(√2/2) =
= (4√3)/√2 = 2√6 см.
Площадь боковой грани Sбг = (1/2)*А*а = (1/2)*2√6*12 = 12√6.
Площадь боковой поверхности пирамиды Sбок = 3*Sбг =
3*12√6 = 36√6 см².
Площадь полной поверхности пирамиды S = So + Sбок =
= 36√3 + 36√6 = 36(√3 + √6) = 150.5355 см².
R ==>?
<AKB =<KDA +<KAD (внешний угол ΔAKD ) ;
<AKB = <BDA+<CAD ;
обозначаем (удобно) <BDA =α ;<CAD =60° -α ;
AB =2R*sinα ;
CD =2R*sin(60° -α) .
{5 =2R*sin(60° -α) ;3 =2R*sinα . * * * * * R = 3/2sinα * * * * *
5/3 =sin(60° -α)/sinα ;
***sin(60° -α) =sin60°cosα -cos60°sinα =(√3cosα -sinα)/2 =sinα(√3ctqα-1)/2 ***
***sin(60° -α)/sinα =(√3ctqα-1)/2
5/3 =(√3ctqα-1)/2 ⇒ctqα =13/3√3;
sinα =1/√(1+ctq²α) = 3√3/14
sinα =1/√(1+ctq²α) = 3√3/14;
R = 32/sinα ⇒7/√3. (вычисление нужно проверить)
ответ : 7/√3.