В опуклому п’ятикутнику ABCDE вершину B сполучено рівними між собою діагоналями з двома іншими вершинами. Відомо, що ∠BEA = ∠BDC, ∠ABE = ∠CBD. Порівняй периметри чотирикутників ABDE і BEDC. Відповідь обґрунтуй.
1. сначала рисуем основание и от одного из его концов, с циркуля, в сторону направления второй стороны, рисуем полукруг, равный по радиусу этой известной стороне.
2. Затем с циркуля с двух концов основания восстанавливаем перпендикуляры к самому основанию (как это делать Вы знаете).
3. С линейки отмеряем известную высоту на обоих перпендикулярах, начиная от основания.
4 Соединяем вершины высот прямой линией с линейки. Полученная линия параллельна основанию.
5. Место пересечения этой линии и полуокружности - это вершина нужного треугольника. Соединим её с концами основания.
6. С циркуля нарисуем второй полукруг к вершине от другого конца основания так, чтобы оба полукруга пересекались сверху и снизу. Соединим точки их пересечения. Получится высота треугольника.
1) если два катета одного прямоугольного треугольника равны
соответственно двум катетам другого прямоугольного треугольника, то
такие треугольники равны - первый признак равенства треугольников по двум сторонам и углу между ними
4) если две стороны одного прямоугольного треугольника равны
соответственно двум сторонам другого прямоугольного треугольника,
то такие треугольники равны - если две стороны одного прямоугольного треугольника равны соответственно двум сторонам другого прямоугольного треугольника, то и третья сторона одного треугольника равна третьей стороне другого треугольника; такие треугольники равны по трем сторонам
1. сначала рисуем основание и от одного из его концов, с циркуля, в сторону направления второй стороны, рисуем полукруг, равный по радиусу этой известной стороне.
2. Затем с циркуля с двух концов основания восстанавливаем перпендикуляры к самому основанию (как это делать Вы знаете).
3. С линейки отмеряем известную высоту на обоих перпендикулярах, начиная от основания.
4 Соединяем вершины высот прямой линией с линейки. Полученная линия параллельна основанию.
5. Место пересечения этой линии и полуокружности - это вершина нужного треугольника. Соединим её с концами основания.
6. С циркуля нарисуем второй полукруг к вершине от другого конца основания так, чтобы оба полукруга пересекались сверху и снизу. Соединим точки их пересечения. Получится высота треугольника.
Объяснение:
1) если два катета одного прямоугольного треугольника равны
соответственно двум катетам другого прямоугольного треугольника, то
такие треугольники равны - первый признак равенства треугольников по двум сторонам и углу между ними
4) если две стороны одного прямоугольного треугольника равны
соответственно двум сторонам другого прямоугольного треугольника,
то такие треугольники равны - если две стороны одного прямоугольного треугольника равны соответственно двум сторонам другого прямоугольного треугольника, то и третья сторона одного треугольника равна третьей стороне другого треугольника; такие треугольники равны по трем сторонам