2.Так как ABCDA1B1C1D1 – прямоугольный параллелепипед, то A1C1 – проекция MC1 на (A1B1C1D1), тогда по теореме Пифагора MC1²=MA1²+A1C1², при этом по теореме Пифагора A1C1²=A1B1²+B1C1²=a²+16a²=17a², откуда MC1²=a²+17a²=18a²⇒MC1=3√a2. Так как ABCDA1B1C1D1 – прямоугольный параллелепипед, то по теореме Пифагора MD²=MA²+AD²=а²+16a²=17a²⇒MD=a√17. Аналогично по теореме Пифагора C1D²=C1D1²+D1D²=a²+4a²=5a²⇒C1D=a√5. Таким образом, PC1MD=C1M+MD+C1D=3√a2+a√17+a√5, тогда:
Рассмотрим картинку. Так как параллелепипед прямоугольный, то он прямой и в основании лежит прямоугольник. Следовательно, его боковые ребра (например, MM1) параллельны боковым ребрам призмы и равны, так как основания призмы вписаны в основания параллелепипеда (то есть лежат в одних и тех же плоскостях). Отсюда следует, что высоты призмы и параллелепипеда одинаковы. Пусть h – длина их высоты. Рассмотрим отдельно основание. По свойству правильного шестиугольника BF⊥FE. Так как MNKP – прямоугольник, то есть MP⊥PK, то MP∥BF. Заметим также, что вообще говоря MP=BF, а PK=AD. Пусть a – сторона шестиугольника. Его угол равен 120∘, следовательно, по теореме косинусов:
Заметим также, что ∠MAB=30∘, следовательно, в треугольнике MAB : sin30∘=MB/AB⇒MB=1/2a.
Следовательно, MN=1/2a+a+1/2a=2a. Значит, MNKP – прямоугольник со сторонами a√3 и 2a. Площадь правильного шестиугольника равна 3√3/2a², следовательно, объем призмы :
а объем параллелепипеда:
следовательно ,
объяснение
Одна из самых долгих моих задач, может получит значок *поверенный*...
Будем решать действия по списку
1. действия на фото.
2.Так как ABCDA1B1C1D1 – прямоугольный параллелепипед, то A1C1 – проекция MC1 на (A1B1C1D1), тогда по теореме Пифагора MC1²=MA1²+A1C1², при этом по теореме Пифагора A1C1²=A1B1²+B1C1²=a²+16a²=17a², откуда MC1²=a²+17a²=18a²⇒MC1=3√a2. Так как ABCDA1B1C1D1 – прямоугольный параллелепипед, то по теореме Пифагора MD²=MA²+AD²=а²+16a²=17a²⇒MD=a√17. Аналогично по теореме Пифагора C1D²=C1D1²+D1D²=a²+4a²=5a²⇒C1D=a√5. Таким образом, PC1MD=C1M+MD+C1D=3√a2+a√17+a√5, тогда:
3. на втором фото)
Рассмотрим картинку. Так как параллелепипед прямоугольный, то он прямой и в основании лежит прямоугольник. Следовательно, его боковые ребра (например, MM1) параллельны боковым ребрам призмы и равны, так как основания призмы вписаны в основания параллелепипеда (то есть лежат в одних и тех же плоскостях). Отсюда следует, что высоты призмы и параллелепипеда одинаковы. Пусть h – длина их высоты. Рассмотрим отдельно основание. По свойству правильного шестиугольника BF⊥FE. Так как MNKP – прямоугольник, то есть MP⊥PK, то MP∥BF. Заметим также, что вообще говоря MP=BF, а PK=AD. Пусть a – сторона шестиугольника. Его угол равен 120∘, следовательно, по теореме косинусов:
Заметим также, что ∠MAB=30∘, следовательно, в треугольнике MAB : sin30∘=MB/AB⇒MB=1/2a.
Следовательно, MN=1/2a+a+1/2a=2a. Значит, MNKP – прямоугольник со сторонами a√3 и 2a. Площадь правильного шестиугольника равна 3√3/2a², следовательно, объем призмы :
а объем параллелепипеда:
следовательно ,
объяснениеОдна из самых долгих моих задач, может получит значок *поверенный*...