Объяснение:
Объём пирамиды равен
объём конуса
Их отношение будет равно
То есть отношение площадей
На рисунке представлено основание.
AB=BC и CD=DA
Угол между AB и BC равен α
Прямая DB будет проходить через центр окружности и являться диаметром, поскольку одновременно является биссектрисой углов ABC и CDA.
То есть DB = 2r
Треугольник ABD будет прямоугольным с прямым углом A, поскольку он опирается на дугу в 180 градусов.
ABD = α/2 заменим для простоты на β
Тогда
Площадь треугольника будет
Площадь основания равна двум таким площадям, итого получаем
Треугольник равнобедренный, т.к. ∠В=∠С=80° .
Проведём ВК так , чтобы ∠АВК=60° . Тогда ∠ЕВК=40° , ∠КВС=20° .
ΔВСК: ∠ВКС=180-80-20=80° ⇒ ВС=ВК
ΔВFC: ∠BDC=180-80-50=50 ⇒ BC=BF
ВК=ВС=ВF ⇒ ΔBKF - равнобедренный , ∠КВF=60° ⇒
ΔBKF - равносторонний и все его углы равны 60° , ВК=KF .
∠ВКЕ=180-∠BKC=100° , ∠КВЕ+∠КЕВ=180°-∠ВКЕ=180-100=80 ,
∠ВЕК=180-100-40=40° ⇒ ВК=КЕ
BK=КE=KF
Рассмотрим ΔKFE: КЕ=КF ⇒ ∠KFE=∠KEF ,
∠EKF=∠BKE-∠BKF=100-60=40° , ∠KFE=∠KEF=(180-40):2=70 ,
∠x=∠KEF-∠KEB=70°-40°=30°
Объяснение:
Объём пирамиды равен
объём конуса
Их отношение будет равно
То есть отношение площадей
На рисунке представлено основание.
AB=BC и CD=DA
Угол между AB и BC равен α
Прямая DB будет проходить через центр окружности и являться диаметром, поскольку одновременно является биссектрисой углов ABC и CDA.
То есть DB = 2r
Треугольник ABD будет прямоугольным с прямым углом A, поскольку он опирается на дугу в 180 градусов.
ABD = α/2 заменим для простоты на β
Тогда
Площадь треугольника будет
Площадь основания равна двум таким площадям, итого получаем
Треугольник равнобедренный, т.к. ∠В=∠С=80° .
Проведём ВК так , чтобы ∠АВК=60° . Тогда ∠ЕВК=40° , ∠КВС=20° .
ΔВСК: ∠ВКС=180-80-20=80° ⇒ ВС=ВК
ΔВFC: ∠BDC=180-80-50=50 ⇒ BC=BF
ВК=ВС=ВF ⇒ ΔBKF - равнобедренный , ∠КВF=60° ⇒
ΔBKF - равносторонний и все его углы равны 60° , ВК=KF .
∠ВКЕ=180-∠BKC=100° , ∠КВЕ+∠КЕВ=180°-∠ВКЕ=180-100=80 ,
∠ВЕК=180-100-40=40° ⇒ ВК=КЕ
BK=КE=KF
Рассмотрим ΔKFE: КЕ=КF ⇒ ∠KFE=∠KEF ,
∠EKF=∠BKE-∠BKF=100-60=40° , ∠KFE=∠KEF=(180-40):2=70 ,
∠x=∠KEF-∠KEB=70°-40°=30°