В основі піраміди лежить прямокутний трикутник з катетом 6 см і гіпотенузою 10 см. Знайдіть об єм піраміди якщо всі її бічні ребра нахилені до площини основи під кутом 60 градусів
Основание пирамиды - правильный треугольник. Следовательно, радиус описанной около него окружности (ОС) равен удвоенному радиусу вписанной окружности R=2*r = 6. А высота основания СН = 9. Высота пирамиды равна 4, а высота основания =9. Следовательно, центр описанного шара лежит ниже плоскости основания пирамиды. Центр шара Q лежит на линии высоты пирамиды и совпадает с центром окружности, описанной около равнобедренного треугольника, боковой стороной которого является боковое ребро пирамиды SC, а высотой – высота пирамиды SO. Рассмотрим прямоугольный треугольник ОCQ. В нем ОQ=Rш-H=Rш-4 (Н - высота пирамиды ,Rш - радиус шара), ОС=R=6 (радиус описанной около основания окружности). Тогда по Пифагору QC²=ОС²+OQ² или Rш²=R²+(Rш-H)². Раскрываем скобки: Rш²=R²+Rш²-2*Rш*Н+H² или Rш=(R²+H²)/2Н. В нашем случае Rш=(36+16)/2*4 = 6,5. Объем шара V=(4/3)*π*R³ =(4/3)*3,14*274,625 + 3449,29/3 ≈1149,76 ≈ 1150. ответ: Vш ≈ 1150.
Радиус окружности, описанной около правильного (равностороннего) треугольника, равен двойному радиусу окружности, вписанной в этот треугольник . R = 2r , где R - радиус описанной окружности, r - радиус вписанной окружности R = 2 * 2 = 4 (cм)
Радиус окружности, вписанной в этот треугольник можно выразить через сторону треугольника
r = a * √3 / 6, где а - сторона правильного треугольника
R=2*r = 6. А высота основания СН = 9.
Высота пирамиды равна 4, а высота основания =9. Следовательно, центр описанного шара лежит ниже плоскости основания пирамиды.
Центр шара Q лежит на линии высоты пирамиды и совпадает с центром окружности, описанной около равнобедренного треугольника, боковой стороной которого является боковое ребро пирамиды SC, а высотой – высота пирамиды SO.
Рассмотрим прямоугольный треугольник ОCQ.
В нем ОQ=Rш-H=Rш-4 (Н - высота пирамиды ,Rш - радиус шара), ОС=R=6 (радиус описанной около основания окружности).
Тогда по Пифагору QC²=ОС²+OQ² или Rш²=R²+(Rш-H)².
Раскрываем скобки: Rш²=R²+Rш²-2*Rш*Н+H² или
Rш=(R²+H²)/2Н. В нашем случае Rш=(36+16)/2*4 = 6,5.
Объем шара V=(4/3)*π*R³ =(4/3)*3,14*274,625 + 3449,29/3 ≈1149,76 ≈ 1150.
ответ: Vш ≈ 1150.
R = 2r , где R - радиус описанной окружности, r - радиус вписанной окружности
R = 2 * 2 = 4 (cм)
Радиус окружности, вписанной в этот треугольник можно выразить через сторону треугольника
r = a * √3 / 6, где а - сторона правильного треугольника
r * 6
a = ---------
√3
2 * 6 12 12 * √3 12√3
a = ----------- = --------- = ------------- = ----------- = 4√3 (см)
√3 √3 √3 * √3 3
Периметр равностороннего треугольника
P = 3a
P = 3 * 4√3 = 12√3 (cм²)