В основі піраміди лежить ромб зі стороною a і тупим кутом бета. Дві бічні грані піраміди, що містять сторони цього кута, перпендикулярні до основи, а дві інші - нахилені до неї під кутом альфа. Знайдіть площу повної поверхні піраміди.
Центром описанной окружности треугольника является точка пересечения срединных перпендикуляров.
Для остроугольного треугольника этот центр будет в треугольнике.
Построение.
Построить нужный треугольник не составляет труда.
1) Для остроугольного треугольника центр описанной окружности будет внутри треугольника. .
Измерьте линейкой каждую сторону треугольника и найдите ее середину. С угольника ( у него есть прямой угол) проведите из середины каждой стороны прямые. Точка их пересечения - искомый центр описанной окружности.
Расстояние от него до вершин треугольника равны радиусу описанной окружности.
2) Для тупоугольного треугольника построение будет таким же, но срединные перпендикуляры пересекутся ВНЕ треугольника.
3) Для прямоугольного треугольника достаточно найти середину гипотенузы, т.к. срединные перпендикуляры пересекаются именно в этой точке. Полезно запомнить, что центром описанной вокруг прямоугольного треугольника окружности является середина его гипотенузы, т.к. расстояния от нее до вершин треугольника равны.
Треугольник со сторонами 13,14 и 15 см вращается вокруг средней стороны.Найти поверхность тела. Тело вращения будет походить на детскую игрушку юла. Т.е. верхняя и нижняя части - два конуса с общим основанием АА₁ и радиусом, равным высоте АО данного треугольника, проведенным к средней по величине стороне, равной 14 см. Чтобы найти эту высоту, нужно найти по формуле Герона площадь треугольника. Вычисления приводить не буду - треугольник с такими сторонами встречается в задачах часто, его площадь легко запоминается и равна 84 см² S=a*h:2, где а - сторона, h- высота к ней. 2S=a*h h=2S:а h=168:14=12 см - это радиус окружности - общего основания конусов. Рассмотрим рисунок. Площадь тела равна сумме площадей боковых поверхностей конуса АВА₁ и конуса АСА₁ S =πrl S₁=π*12*13 S₂=π*12*15 S общ=12π(13+15)=336 π при π=3,14 S=1055,04см² при π полном ( на калькуляторе) S=1055,575 см²
Центром описанной окружности треугольника является точка пересечения срединных перпендикуляров.
Для остроугольного треугольника этот центр будет в треугольнике.
Построение.
Построить нужный треугольник не составляет труда.
1) Для остроугольного треугольника центр описанной окружности будет внутри треугольника. .
Измерьте линейкой каждую сторону треугольника и найдите ее середину. С угольника ( у него есть прямой угол) проведите из середины каждой стороны прямые. Точка их пересечения - искомый центр описанной окружности.
Расстояние от него до вершин треугольника равны радиусу описанной окружности.
2) Для тупоугольного треугольника построение будет таким же, но срединные перпендикуляры пересекутся ВНЕ треугольника.
3) Для прямоугольного треугольника достаточно найти середину гипотенузы, т.к. срединные перпендикуляры пересекаются именно в этой точке. Полезно запомнить, что центром описанной вокруг прямоугольного треугольника окружности является середина его гипотенузы, т.к. расстояния от нее до вершин треугольника равны.
Как это выглядит, дано в приложении.
Тело вращения будет походить на детскую игрушку юла.
Т.е. верхняя и нижняя части - два конуса с общим основанием АА₁ и радиусом, равным высоте АО данного треугольника, проведенным к средней по величине стороне, равной 14 см.
Чтобы найти эту высоту, нужно найти по формуле Герона площадь треугольника. Вычисления приводить не буду - треугольник с такими сторонами встречается в задачах часто, его площадь легко запоминается и равна 84 см²
S=a*h:2, где а - сторона, h- высота к ней.
2S=a*h
h=2S:а
h=168:14=12 см - это радиус окружности - общего основания конусов.
Рассмотрим рисунок.
Площадь тела равна сумме площадей боковых поверхностей конуса АВА₁ и конуса АСА₁
S =πrl
S₁=π*12*13
S₂=π*12*15
S общ=12π(13+15)=336 π
при π=3,14
S=1055,04см²
при π полном ( на калькуляторе)
S=1055,575 см²