В основі призми лежить паралелограм ,сторони відносяться як 1:3 а кут між ними 30 градусів . площа бічної поверхніпризми дорівнює 112 см² а площа повної поверхні 124 см ² .знайти висоту призми
длины отрезков, на которые биссектриса меньшего острого угла делит медиану, проведенную к гипотенузе.
Решение.
1) По теореме Пифагора найдём длину катета АС:
АС = √(АВ²-ВС²) = √(130²-104²) = √(16900-10816) = √6084= 78 см
2) В треугольнике меньшая сторона лежит против меньшего угла. Это значит, что меньшим острым углом является ∠В, против которого лежит катет АС.
3) Выполним построение.
Из угла В проведём биссектрису, которая пересечет катет АС в точке Е. Из вершины прямого угла С проведём медиану к гипотенузе АВ, и точку пересечения медианы со стороной АВ обозначим D, а точку пересечения медианы CD с биссектрисой ВЕ обозначим F.
В принятых обозначениях необходимы найти DF и FC.
4) Теорема. В прямоугольном треугольнике медиана, проведённая из вершины прямого угла к гипотенузе, равна половине гипотенузы.
Следовательно:
DC = АВ : 2 = 130 : 2 = 65 см
Так как точка D является серединой АВ, согласно построению, то:
BD = АВ : 2 = 130 : 2 = 65 см
5) Теорема. Биссектриса данного угла треугольника делит противолежащую сторону на части, пропорциональные прилежащим сторонам.
Следовательно:
DF : FC = DB : BC (1)
Так как DC = DF + FC = 65 cм, то
DF = DC - FC = 65-FC (2)
Подставим (2) в (1), получим:
(65-FC) : FC = DB : BC
(65-FC) : FC = 65 : 104
65 · 104 - 104FC = 65FC
6760 = 65FC + 104FC
169 FC = 6760
FC = 6760 : 169 = 40 см
Отсюда DF = 65-FC = 65 - 40 = 25 см
ответ: биссектриса меньшего острого угла делит медиану, проведённую к гипотенузе, на два отрезка длиной (считая от вершины прямого угла) 40 см и 25 см.
Периметр ромба равен P = 4a, где а - сторона ромба, отсюда а = P/4 = 148/4 = 37. Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Обозначим половины диагоналей за b и с. Тогда разность половин диагональ равна 1/2•46 = 23. Составим систему, используя теорему Пифагора: 37² = b² + c² b - c = 23
1369 = (c + 23)² + c² b = c + 23
1369 = c² + 46c + 529 + c² b = c + 23
2c² + 46c - 840 = 0 b = c + 23
c² + 23c - 420 = 0 c1 + c2 = -23 c1•c2 = -420
c1 = -35 - не уд. условию c2 = 12
с = 12 b = 12 + 23
c = 12 b = 35 Значит, половины диагоналей равны 12 и 35 см. Длина меньшей диагонали равна 1/2•12 см = 24 см. ответ: 24 см.
40 см и 25 см
Объяснение:
Дано:
Прямоугольный треугольник АВС (угол С - прямой):
гипотенуза АВ = 130 см
катет ВС = 104 см
Найти:
длины отрезков, на которые биссектриса меньшего острого угла делит медиану, проведенную к гипотенузе.
Решение.
1) По теореме Пифагора найдём длину катета АС:
АС = √(АВ²-ВС²) = √(130²-104²) = √(16900-10816) = √6084= 78 см
2) В треугольнике меньшая сторона лежит против меньшего угла. Это значит, что меньшим острым углом является ∠В, против которого лежит катет АС.
3) Выполним построение.
Из угла В проведём биссектрису, которая пересечет катет АС в точке Е. Из вершины прямого угла С проведём медиану к гипотенузе АВ, и точку пересечения медианы со стороной АВ обозначим D, а точку пересечения медианы CD с биссектрисой ВЕ обозначим F.
В принятых обозначениях необходимы найти DF и FC.
4) Теорема. В прямоугольном треугольнике медиана, проведённая из вершины прямого угла к гипотенузе, равна половине гипотенузы.
Следовательно:
DC = АВ : 2 = 130 : 2 = 65 см
Так как точка D является серединой АВ, согласно построению, то:
BD = АВ : 2 = 130 : 2 = 65 см
5) Теорема. Биссектриса данного угла треугольника делит противолежащую сторону на части, пропорциональные прилежащим сторонам.
Следовательно:
DF : FC = DB : BC (1)
Так как DC = DF + FC = 65 cм, то
DF = DC - FC = 65-FC (2)
Подставим (2) в (1), получим:
(65-FC) : FC = DB : BC
(65-FC) : FC = 65 : 104
65 · 104 - 104FC = 65FC
6760 = 65FC + 104FC
169 FC = 6760
FC = 6760 : 169 = 40 см
Отсюда DF = 65-FC = 65 - 40 = 25 см
ответ: биссектриса меньшего острого угла делит медиану, проведённую к гипотенузе, на два отрезка длиной (считая от вершины прямого угла) 40 см и 25 см.
Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Обозначим половины диагоналей за b и с. Тогда разность половин диагональ равна 1/2•46 = 23. Составим систему, используя теорему Пифагора:
37² = b² + c²
b - c = 23
1369 = (c + 23)² + c²
b = c + 23
1369 = c² + 46c + 529 + c²
b = c + 23
2c² + 46c - 840 = 0
b = c + 23
c² + 23c - 420 = 0
c1 + c2 = -23
c1•c2 = -420
c1 = -35 - не уд. условию
c2 = 12
с = 12
b = 12 + 23
c = 12
b = 35
Значит, половины диагоналей равны 12 и 35 см.
Длина меньшей диагонали равна 1/2•12 см = 24 см.
ответ: 24 см.