В основі прямої призми лежить рівнобедрений трикутник АВС (АС- основа трикутника). Двогранний кут між площинами (АВ1С) та (АВС) дорівнює 60 градусів. Знайти висоту призми якщо висота BM в основі призми дорівнює 5√3
Объяснение: Смежные углы параллелограмма в паре дают 180°, а противоположные его углы равны. Таким образом, зная любой один угол параллелограмма, можно найти значения всех остальных углов. α=180°- β
Найдите неизвестные углы параллелограмма ABCD если:
а) угол B= 130°
б) угол A + угол C = 140°
ответ: а) ∠ B = ∠ D =130°
∠ A = ∠ C = °50
- - - - - - - - - - - - - - - -
б ) ∠ A = ∠ C = ( ∠A + ∠ C) / 2 =140°/2 =70° ;
∠ B = ∠ D =180° -∠A =180° - 70° =110 °
Объяснение: Смежные углы параллелограмма в паре дают 180°, а противоположные его углы равны. Таким образом, зная любой один угол параллелограмма, можно найти значения всех остальных углов. α=180°- β
Для любого треугольника справедлива теорема синусов, которая говорит о следующем:
A/sin(a)=B/sin(b)=C/sin(c)=2R, где:
A/sin(a)=B/sin(b)=C/sin(c) - соотношения сторон треугольников к синусу противоположных им углов;
R - радиус окружности, описанной около треугольника.
1). Имеем сторону треугольника 3 (см) и противоположный ей угол, равный 120°. Тогда по теореме синусов:
3/sin(120°)=2R;
3/sin(90°+30°)=2R;
3/cos30°=2R;
3/(√3/2)=2R;
6/√3=2R;
R=3/√3; | освободимся от иррациональности, домножим и числитель, и знаменатель на √3
R=√3.
2). Аналогично, имеем сторону 3 см и угол, равный 30:
3/sin(30°)=2R;
3/(1/2)=2R;
6=2R;
R=3.
3). Аналогично, имеем сторону 3 см и угол, равный 135°;
3/sin(135°)=2R;
3/sin(90°+45°)=2R;
3/cos45°=2R;
3/(√2/2)=2R;
6/√2=2R;
R=3/√2; | освободимся от иррациональности, домножим и числитель, и знаменатель на √2
R=(3*√2)/2.
ответ: 1). R=√3; 2). R=3; 3). R=(3*√2)/2.