В основі трикутної піраміди SABC, усі бічні ребра якої рівні між собою, лежить прямокутний трикутник ABC з катетами AC =12см, BC = 2 корень из 14см. Знайдіть довжину бічного ребра цієї піраміди, якщо висота піраміди SO=1/2AB.
4) Медиана делит противоположную сторону пополам ⇒ DС = ВD = 12 (см); ВС= 12+12 = 24 (см) АВ = ВС (по условию) АВ = 24см AB + DC = 24 + 24 = 48 (cм) - сумма двух сторон А дальше не решается, задача написана не до конца.
В условии не указано какой угол=90, будем считать С и С1, АД-биссетриса, ВД=15, ДС=9, ДС/ВД=АС/АВ, АС=х, ВС=15+9=24, АВ =корень(ВС в квадрате+АС в квадрате)=корень(576+х в квадрате), 9/15=х/корень(576+х в квадрате), возводим обе части в квадрат, 81/225=х в квадрате/(576+х в квадрате), 225*х в квадрате=46656+81*х в квадрате, 144*х в квадрате=46656, х=18=АС, АВ=корень(576+324)=30, АВ/А1В1=30/20=3/2, АС/А1С1=18/12=3/2, ВС/В1С1=24/16=3/2, отношения сторон равны стороны пропорцианальны, треугольник АВС подобен треугольнику А1В1С1 по третьему признаку - стороны однного треугольника пропорцианальны сторонам другого треугольника
Р = 4,8 * 3 = 14,4 (см)
ответ: 14,4 см - периметр Δ.
2) В равнобедренном Δ боковые стороны равны
7,3 + 7,3 = 14,6 (см) - сумма двух боковых сторон
22,3 - 14,6 = 7,7 (см)
ответ: 7,7 см - основание Δ
3) Углы при основании равнобедренного треугольника равны.
⇒ ∠А = ∠С.
Сумма углов треугольника = 180°=
⇒∠А = ∠С = (180° - 74°) : 2 = 106° : 2 = 54°
Биссектриса делит угол пополам,
⇒ ∠ВАD = ∠САD = 54° : 2 = 27°
ответ: ∠САD = 27°
4) Медиана делит противоположную сторону пополам
⇒ DС = ВD = 12 (см);
ВС= 12+12 = 24 (см)
АВ = ВС (по условию)
АВ = 24см
AB + DC = 24 + 24 = 48 (cм) - сумма двух сторон
А дальше не решается, задача написана не до конца.