В основании четырёхугольной пирамиды трапеция с острым углом 30° и высотой 10 см. Боковые грани пирамиды, которые содержат короткое основание и короткую боковую сторону трапеции, образуют с плоскостью трапеции прямой угол и перпендикулярны одна другой. Остальные боковые грани образуют с плоскостью трапеции угол величиной 60°.
1. Определи вид трапеции, которая лежит в основании пирамиды.
2. Рассчитай площадь боковых граней пирамиды.
1. Если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
2. Если сторона и два прилежащих угла одного треугольника равны соответствующей стороне и прилегающим углам другого треугольника, то такие треугольники равны.
3. Если три стороны одного треугольника равны трем сторонам другого треугольника, то такие треугольники равны.
Отсюда, кстати, вытекают следствия для равенства прямоугольных треугольников.
1. Если два катета одного прямоугольного треугольника равны катетам другого треугольника то они равны.
2. Если катет и острый угол одного треугольника равны катету и острому углу другого треугольника, то они равны.
3. Если гипотенуза и острый угол одного треугольника равны гипотенузе и острому углу другого треугольника то они равны.
4. Если катет и гипотенуза одного треугольника равны катету и гипотенузе другого треугольника то они равны.
5. Если гипотенуза одного равнобедренного треугольника равна гипотенузе другого равнобедренного треугольника, то они равны.
И т.д.
1. ∠АВС = 65°.
2. ∠АВС = 115°.
Объяснение:
Расположение точки В нам неизвестно, но предполагаем, что она находится на окружности.
Угол АВС - вписанный, опирающийся на дугу АС, что и центральный угол АОС. Градусная мера вписанного угла равна половине градусной меры центрального угла, опирающегося на ту же дугу. Градусная мера центрального угла равна градусной мере дуги, на которую он опирается.
Следовательно, возможны два варианта:
1. Точка В лежит на большой дуге АС окружности и
∠АВС = (1/2)·∠АОС = 130:2 = 65°.
2. Точка В лежит на малой дуге АС окружности и тогда дуга АС имеет градусную меру:
360° - 130° = 230° =>
∠АВС = (1/2)·230° = 115°.