В основании наклонной призмы CDEFC1D1E1F1 лежит трапеция CDEF ПРИЧЕМ DE||CF И CF=41см EP=13см CD=DE=20см. Плоскость диагонального сечения проходящего через точку С перпендикулярна основанию и равна 30корней из 20
см в квадрате. найдите обьем призмы. Решение с рисунком проршу вас
АС = 16 ед.
Объяснение:
Расстояние от вершины треугольника В до точки касания Н с вписанной в треугольник окружностью равно разности полупериметра треугольника и противоположной вершине В стороны (теорема) или в нашем случае
ВН = 40/2 -АС = 20 - 2*DC. (1) (так как в равнобедренном треугольнике высота является и медианой)
В прямоугольном (радиус ОН перпендикулярен стороне ВС в точке касания Н) треугольнике ВОН ОН = OD =(2/5)*BD (дано).
ВО = BD - (2/5)*BD = (3/5)*BD и по Пифагору:
ВН = √(ВО²-ОН²) = √(9*ВО²/25-4*ВО²/25) = (√5/5)*BD.
Прямоугольные треугольники ВDC и ВНО подобны по общему острому углу. Из подобия: ВН/ОН=BD/DC. =>
DC = BD*OH/BH = BD*2*BD*5/(5*√5*BD) = (2/√5)*BD.
Из (1): (√5/5)*BD = 20 - (4/√5)*BD => BD*5/√5 = 20 =>
BD = 4√5 ед. Тогда
DC = (2/√5)*BD = (2/√5)*4√5 = 8 ед.
АС = 2*DC = 16 ед.
1-Б (сумма длин двух сторон треугольника всегда больше третьей)
2-А
(a+a+a-3=36
3a=33
a=11)
3-Б
(48-18•2=12)
4-Б
(Здесь может быть два варианта ответа:
48-12•2=24 (основание 24, а боковая сторона 12),
либо (48-12):2=16 (боковые стороны 16 и 16))
5-В
(Рассматриваем оба варианта:
36-16•2=4 (когда боковые стороны по 16, а основание 4)
(36-16):2=10 (когда боковые стороны по 10))
6-А
(AO=OB, угол CAO = углу OBD = 90°, угол BOD = углу AOC т.к. вертикальные
=>
∆AOC = ∆DOB по стороне и двум прилежащим к ней углам
=>
катеты AC и DB равны)
7-В
(У треугольника всего три стороны и три угла, на против каждой стороны только один угол, соответственно максимум три медианы может быть проведено к каждой из сторон из каждого угла...
биссектрис столько же (т.к. всего три угла))
P.S. 7 вопрос - кривой