В основании пирамиды объемом 80 см лежит прямоугольник с диагональю 10 см. Найдите стороны этого прямоугольника, если каждое боковое ребро пирамиды наклонено к основанию под углом 45.
Тут подобие треугольников: большой треугольник( высота фонаря, сумма расстояния от фонаря до человека + длина тени, расстояние от "макушки " фонаря до конца тени) и маленький треугольник ( высота человека, длина тени, расстояния от "макушки" человека до конца тени). Как мы знаем отношение соответственных сторон у подобных треугольников равно коэффициенту подобия. Из этого следует, что высота фонаря(9м) относится к высоте человека (2м), так же как растояние от фонаря(Х) к тени(1м) 9:2=Х:1( решаем пропорцией) 2Х=9 Х=4,5 Удачи в познаниях!
1.
a=60⁰
в=40⁰
с=14 см
c=180⁰-60⁰-40⁰=80⁰
ab/sinc=bc/sina=ac/sinb
14/sin80=a/sin60 ⇒ a≈14/0.984*0.86≈12.236
14/sin80=b/sin40 ⇒ b≈14/0.984*0.642≈9.134
2.
a=80⁰
a=16 см
b=10 см
ab/sinc=bc/sina=ac/sinb
16/sin80=10/sinb ⇒ sinb≈10*0.9848/16≈0.6155
b=37⁰59'
c=180-80-37⁰59'=100-37⁰59'=62⁰1'
16/sin80=c/sin62⁰1' ⇒ c≈16*0.8830/0.9848≈14.346
3.
b=32 см
с=45 см
a=87⁰
a²=c²+b²-2acsina ⇒ a²≈1024+2025+150.624 ≈2998.38 ⇒ a≈53.84
ab/sinc=bc/sina=ac/sinb
53.84/sin87=32/sinв ⇒ sinb≈32*0.9986/53.84≈0.5935
b=36⁰24'
c=180⁰-87⁰-36⁰24'=100⁰-36⁰24'=56⁰36'
9:2=Х:1( решаем пропорцией)
2Х=9
Х=4,5
Удачи в познаниях!