В основании прямоугольного параллелепипеда лежит ромб, диагонали которого равны 12см и 16см. Высота параллелепипеда равна 8см. Найдите площадь его полной поверхности. Нужно мне сейчас: начертить этот параллелепипед
Объяснение: полная площадь параллелепипеда состоит из суммы площадей его 2-х оснований и боковой поверхности. Найдём площадь его основания по формуле: Sосн=½×д1×д2, где д1 и д2 -его диагонали:
Sосн=½×12×16=96см²
Так как таких оснований 2 то:
S2-х.осн=96×2=192см²
Найдём сторону основания. Диагонали ромба пересекаются под прямым углом и при пересечении делятся пополам. Обозначим точку их пересечения О. Также они образуют 4 равных прямоугольных треугольника. Тогда ВО=ДО=12/2=6см;
АО=СО=16/2=8см
Рассмотрим полученный ∆АОВ. В нём АО и ВО - катеты, а АВ- гипотенуза. Найдём её по теореме Пифагора:
АВ²=АО²+ВО²=6²+8²=36+64=100;
АВ=√100=10см
Теперь найдём площадь боковой грани по формуле прямоугольника:
Sп=520см²
Объяснение:
picture...
ответ: Sпол=672см²
Объяснение: полная площадь параллелепипеда состоит из суммы площадей его 2-х оснований и боковой поверхности. Найдём площадь его основания по формуле: Sосн=½×д1×д2, где д1 и д2 -его диагонали:
Sосн=½×12×16=96см²
Так как таких оснований 2 то:
S2-х.осн=96×2=192см²
Найдём сторону основания. Диагонали ромба пересекаются под прямым углом и при пересечении делятся пополам. Обозначим точку их пересечения О. Также они образуют 4 равных прямоугольных треугольника. Тогда ВО=ДО=12/2=6см;
АО=СО=16/2=8см
Рассмотрим полученный ∆АОВ. В нём АО и ВО - катеты, а АВ- гипотенуза. Найдём её по теореме Пифагора:
АВ²=АО²+ВО²=6²+8²=36+64=100;
АВ=√100=10см
Теперь найдём площадь боковой грани по формуле прямоугольника:
Sбок.гр=8×10=80см²
Так как таких граней 6, то:
Sбок.пов=80×6=480см²
Sпол=S2-х.осн+Sбок.пов=
=192+480=672см²