В основании прямой призмы лежит прямоугольная трапеция с тупым углом β и большим основанием b. Диагональ трапеции является биссектрисой тупого угла, меньшая диагональ призмы образует с плоскостью основания угол γ. Найдите площадь полной поверхности призмы.
КМ - средняя линия основания.
SAKM - отсеченная пирамида.
Vsabc = 12
Vsabc = 1/3 Sabc · h
Vsakm = 1/3 Sakm · h, так как эти пирамиды имеют общую высоту.
Рассмотрим треугольники АВС и АКМ:
АК : АВ = 1 : 2
АМ : АС = 1 : 2
угол при вершине А общий, значит треугольники подобны по двум пропорциональным сторонам и углу между ними.
k = 1/2
Площади подобных треугольников относятся как квадрат коэффициента подобия:
Sakm : S abc = 1 : 4
Sakm = 1/4 Sabc
Vsakm = 1/3 · 1/4 Sabc · h = 1/4 (1/3 Sabc · h) = 1/4 Vsabc
Vsakm = 1/4 · 12 = 3
КМ - средняя линия основания.
SAKM - отсеченная пирамида.
Vsabc = 12
Vsabc = 1/3 Sabc · h
Vsakm = 1/3 Sakm · h, так как эти пирамиды имеют общую высоту.
Рассмотрим треугольники АВС и АКМ:
АК : АВ = 1 : 2
АМ : АС = 1 : 2
угол при вершине А общий, значит треугольники подобны по двум пропорциональным сторонам и углу между ними.
k = 1/2
Площади подобных треугольников относятся как квадрат коэффициента подобия:
Sakm : S abc = 1 : 4
Sakm = 1/4 Sabc
Vsakm = 1/3 · 1/4 Sabc · h = 1/4 (1/3 Sabc · h) = 1/4 Vsabc
Vsakm = 1/4 · 12 = 3