Вероятно, в задаче идет речь о построении перпендикуляра к прямой, проходящего через данную точку на прямой, с циркуля и линейки.
Дано: прямая а, точка А, принадлежащая прямой.
1) Проведем окружность произвольного радиуса с центром в точке А. Точки пересечения окружности с прямой а обозначим В и С. 2) Проведем две окружности одинакового произвольного радиуса (большего половины отрезка ВС), с центрами в точках В и С. 3) Через точки пересечения этих окружностей (К и Н) проведем прямую b. Прямая b - искомый перпендикуляр к прямой а.
Доказательство: А - середина отрезка ВС по построению (АВ = АС как радиусы одной окружности). Тогда КА - медиана треугольника ВКС. Треугольник ВКС равнобедренный, так как ВК = СК как равные радиусы. Значит медиана КА является и высотой, т.е. КА⊥а.
Дано: прямая а, точка А, принадлежащая прямой.
1) Проведем окружность произвольного радиуса с центром в точке А. Точки пересечения окружности с прямой а обозначим В и С.
2) Проведем две окружности одинакового произвольного радиуса (большего половины отрезка ВС), с центрами в точках В и С.
3) Через точки пересечения этих окружностей (К и Н) проведем прямую b.
Прямая b - искомый перпендикуляр к прямой а.
Доказательство:
А - середина отрезка ВС по построению (АВ = АС как радиусы одной окружности). Тогда КА - медиана треугольника ВКС.
Треугольник ВКС равнобедренный, так как ВК = СК как равные радиусы. Значит медиана КА является и высотой, т.е. КА⊥а.
ответ: 28, 19,8
Объяснение:
1. Катет, лежащий напротив угла в 30 градусов равен половине гипотенузы. Следовательно, гипотенуза DE=DF*2=14*2=28 см
2. Угол А= 90- угол В=90-60=30. Катет, лежащий против угла в 30 градусов равен половине гипотенузы. ВС=38/2=19 см
3. ΔКРЕ: ∠Р = 90°, ∠К = 60°, ⇒ ∠Е = 30°.
ΔРКМ: ∠КРМ = 90°, ∠КМР = 60°, ⇒ ∠МКР = 30°.
∠PKM = 30°.
∠РКЕ = 60°,
∠EKM = ∠РКЕ - ∠1 = 60° - 30° = 30°.
Тогда треугольник КМЕ равнобедренный (∠PEK = ∠EKM = 30°),
КМ = МЕ = 16 см
В прямоугольном треугольнике РКМ напротив угла в 30° лежит катет, равный половине гипотенузы, т.е.
РМ = 1/2 КМ = 8 см