В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
дима2852
дима2852
03.12.2022 20:01 •  Геометрия

В основании прямой призмы находится параллелограмм, стороны которого 10см.и 14см. И угол 45° боковое ребро призмы 8см.Найти полную поверхность призмы

Показать ответ
Ответ:
Мэрисельда
Мэрисельда
26.04.2023 01:19
Пусть в треугольнике АВС медиана ВМ к стороне АС. Тогда угол ВМА равен альфа, а угол ВМА равен 180°-альфа.
Мы знаем, что cos(180-a)=-cosa.
Пусть сторона АВ=х, тогда сторона ВС=22-х (так как сумма сторон АВ+ВС=22, поскольку ПЕРИМЕТР равен 42, а сторона АС=20).
В треугольнике АВС по теореме косинусов имеем:
АВ(квадрат)=АМ(квадрат)+ВМ(квадрат)-2*АМ*ВМ*Cosa. (1)
В треугольнике ВМС по этой же теореме:
ВС^2=МС^2+ВМ^2-2*МС*ВМ*Cos(180°-a)  или
ВС^2=МС^2+ВМ^2+2МС*ВМ*Cosa. (2).
Представим в (1) и (2) известные значения и просуммируем оба уравнения.
Тогда получим:
х^2=125-100Cosa + (22-x)^2=125+100Cosa равно
х^2+(22-х)^2=250. Отсюда имеем квадратное уравнение, решая которое находим х.
х^2-22х+117=0.
Х1=11+√(121-117)=13.
Х2=11-2=9.
ответ: боковые стороны треугольника равны 13 и 9.

P.S. Извиняюсь за текст. Планшетом еще не достаточно овладел.
0,0(0 оценок)
Ответ:
kachinlexa1999
kachinlexa1999
01.04.2023 00:12
 1)Попробуем так ,  продолжим точку за M , как выглядит на рисунку , так как CTA=90а , то около треугольника можно   описать окружность такая что AC будет  диаметром , CK биссектриса ,то TCG=GCA, прямоугольник  AGCE в нем CE||AG , следовательно \cup \ AG=\cup \ CE; MTC=CTEMCB=GCA откуда следует что равны по соответствующим дугам 
GCA=CTE\\
GCA=MCB\\
CTE=MTC\\
MCB=MTC
вся это  конструкция выглядит довольно очень искусственно, имеется ввиду что исходя из того что AGCE является прямоугольник, авторы задачи видимо на этом и  конструировали эту самую задачу.
 
2)Теперь докажем численно , то есть для произвольного треугольник, что это и будет выполнятся , к примеру треугольник со сторонами   12;6;7 
такой треугольник существует исходя из неравенств треугольников (Можно конечно взять стороны за a;b;c и проделать операций которые описаны ниже,но оно будет объемным)
Докажем так предположим что  MCB=MTC , то есть что это действительно так , тогда должно выполнятся условие S_{BTA}+S_{BTC}+S_{CTA}=S_{ABC} , если это не так то предположение будет не верным , значит MCB \neq MTC
12^2=6^2+7^2-2*6*7*cos2a\\
 cos2a=-\frac{59}{84}
  по формуле биссектрисы , и зная что CM=0.5*CK, можно найти по формуле биссектрисы 
CM=\frac{6*7*cosa}{6+7}\\
 CM=\frac{6*7*cos(-\frac{arccos(-\frac{59}{84})}{2})}{13}\\ 
 CM=\frac{5*\sqrt{10.5}}{13} 
По теореме косинусов из треугольника BKC\\
KB=\frac{84}{13}
 Найдем длину медианы  BM=\frac{\sqrt{2*KB^2+2*BC^2-CK^2}}{2}\\
BM=\frac{24\sqrt{14}}{13} S_{ABT}=\frac{339\sqrt{14}-140\sqrt{3}*cos(0.5*cos( -\frac{59}{84}))}{184} *0.5*\frac{35\sqrt{3}}{46}*
Угол TMC=arccos( - \frac{35}{92\sqrt{3}}) (это когда находя угол  BMC, затем отнимая от \pi-BMC-a
 Из треугольника TMC , по теореме синусов 
TC=\frac{\sqrt{1-(\frac{35}{92\sqrt{3}})^2}*\frac{5*\sqrt{10.5}}{13}}{sin(arccos(-\frac{59}{84})*0.5)}=\frac{35*\sqrt{3}}{46}\\
AT=\sqrt{36-TC^2} = \frac{13*\sqrt{429}}{46}
 найдем  BT  по теореме косинусов так же 
BT=\frac{339\sqrt{14}-140\sqrt{3}*cos(0.5*cos( -\frac{59}{84}))}{184}
S_{BTC} =\frac{339\sqrt{14}-140\sqrt{3}*cos(0.5*cos( -\frac{59}{84}))}{184}* \frac{35\sqrt{3}}{46}*sin(\frac{arccos\frac{-59}{84}}{2})*0.5
S_{BTA}=sin(\frac{\pi}{2}-\frac{arccos\frac{-59}{84}}{2})*0.5*\frac{339\sqrt{14}-140\sqrt{3}*cos(0.5*cos( -\frac{59}{84}))}{184}*\frac{35\sqrt{3}}{46}
S_{CTA}=\frac{35*\sqrt{3}}{46}*\frac{13*\sqrt{429}}{46}*0.5
 суммируя  получим  
  \frac{5\sqrt{143}}{4} 
 что верно  найдя площадь самого треугольник к примеру по формуле   Герона является верным ,значит предположение было верным  MTC=MCB

Точка м - середина биссектрисы ск треугольника abс. на отрезке bm взята точка t так, что . докажите,
Точка м - середина биссектрисы ск треугольника abс. на отрезке bm взята точка t так, что . докажите,
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота