В остроугольном не равнобедренном треугольнике ABC на сторонах AB, BC, AC, выбираются соответственно точки M, L, K так, что KL || AB и KM = ML . Найдите множество точек N пересечения медиан треугольников KLM
Чертим систему координат, на ней отмечаем данные точки.
Из просчётов видно, что отрезок, являющийся стороной равностороннего треугольника AEF = |-6| + |2| = 8. Модули здесь - отклонения от нулевой точки системы координат по оси абсцисс. Ординат тут равен нулю, так что не входит в счёт.
Для чертежа ищем середину отрезка DF: 8:2 = 4. На оси X это точка -2.
Чертим параллельную оси Y прямую, проходящую через точку -2 на оси X. (на рисунке она серая)
К ней с чертёжных принадлежностей дорисовываем два отрезка длиною 8, такие, чтобы их концы были в точках D и F, соединялись в точке Е или Е1.
Пусть первая сторона будет 5х тогда вторая сторона будет - х.
Так как у параллелограмма противоположные стороны одниковые. Тогда выходит такое уровнения х+х+х5+х5=144
12х=144
х=144/12
х=12-вторая сторона
Первая сторона=х5=5*12=60
Так как у параллелограмма противоположные стороны одниковые. Тогда 1 сторона=противоположной и 2 сторона=противоположной
Чертим систему координат, на ней отмечаем данные точки.
Из просчётов видно, что отрезок, являющийся стороной равностороннего треугольника AEF = |-6| + |2| = 8. Модули здесь - отклонения от нулевой точки системы координат по оси абсцисс. Ординат тут равен нулю, так что не входит в счёт.
Для чертежа ищем середину отрезка DF: 8:2 = 4. На оси X это точка -2.
Чертим параллельную оси Y прямую, проходящую через точку -2 на оси X. (на рисунке она серая)
К ней с чертёжных принадлежностей дорисовываем два отрезка длиною 8, такие, чтобы их концы были в точках D и F, соединялись в точке Е или Е1.
А теперь сами просчёты:
Рассмотрим треугольник OЕF:
ЕF = 8, ОF = 4. найдём OE по теореме Пифагора: OE²=8²+4²=80.
OE = √80 = 4√5 ≈ 9.
Т.к. треугольник может отклоняться как вверх, так и вниз, точек E и E1, которых не хватало для образования треугольника DEF, оказалось две.
Таким образом, искомые точки: E(-2;9) и E1(-2;-9).