В остроугольном треугольнике ABC к стороне BC проведена высота AH, равная 3 см. Найдите длину стороны AC, если BH=4 см, а радиус окружности, описанной около треугольника ABC, равен 5 см.
При решении задачи, как обычно. желателен рисунок.
Опустим из вершин тупых углов трапеции высоты к большему основанию.
Часть большего основания и высота, как катеты, и боковая сторона - гипотенуза, образовали прямоугольный треугольник из тех, что называют египетскими. Стороны в нем относятся как 3:4:5. Поэтому без вычислений ( хотя можно и теорему Пифагора применить) можно определить, что
меньший катет этого треугольника кратен 3. А так как боковая сторона вдвое больше 5,то и катет НD вдвое больше трех и
равен 6 см. Это - проекция боковой стороны на большее основание.
Точно так же с другой стороны от большего основания отсекается высотой отрезок, равный 6 см.
Так как большее основание равно 17, то средняя его часть равна
17-6*2=5 см
Эта часть является стороной прямоугольника, равной меньшему основанию.
При решении задачи, как обычно. желателен рисунок.
Опустим из вершин тупых углов трапеции высоты к большему основанию.
Часть большего основания и высота, как катеты, и боковая сторона - гипотенуза, образовали прямоугольный треугольник из тех, что называют египетскими. Стороны в нем относятся как 3:4:5. Поэтому без вычислений ( хотя можно и теорему Пифагора применить) можно определить, что
меньший катет этого треугольника кратен 3. А так как боковая сторона вдвое больше 5,то и катет НD вдвое больше трех и
равен 6 см. Это - проекция боковой стороны на большее основание.
Точно так же с другой стороны от большего основания отсекается высотой отрезок, равный 6 см.
Так как большее основание равно 17, то средняя его часть равна
17-6*2=5 см
Эта часть является стороной прямоугольника, равной меньшему основанию.
ВС=5 см
Осталась арифметика:
Периметр трапеции равен 5+17+2*10=42 см