В остроугольном треугольнике АВС проведены высоты АМ и СК. Отмечена точка N такая, что AMNK параллелограмм. Докажите, что прямая CN перпендикулярна КМ
1) Находим длину AB, суммируя проекции сторон AC и BC:
A
B
=
15
+
27
=
42
2) Проводим высоту из точки C в точку H. Отрезок AH будет равен проекции стороны АС, т.е. 15. 3) Проводим перпендикуляр из середины AB в точку F. 4) Находим длину половины AB, путем деления пополам:
Треугольники ABC, ACD и CBD подобны между собой . Это непосредственно следует из второго признака подобия (равенство углов в этих треугольниках очевидно).
Прямоугольные треугольники - единственный вид треугольников, которые можно разрезать на два треугольника, подобных между собой и исходному треугольнику.
Обозначения этих трех треугольников в таком порядке следования вершин: ABC, ACD, CBD. Тем самым мы одновременно показываем и соответствие вершин. (Вершине A треугольника ABC соответствует также вершина A треугольника ACD и вершина C треугольника CBD и т. д.)
1) Находим длину AB, суммируя проекции сторон AC и BC:
A
B
=
15
+
27
=
42
2) Проводим высоту из точки C в точку H. Отрезок AH будет равен проекции стороны АС, т.е. 15. 3) Проводим перпендикуляр из середины AB в точку F. 4) Находим длину половины AB, путем деления пополам:
A
B
2
=
42
2
=
21
5) Находим расстояние от середины AB до точки H:
A
B
2
−
A
H
=
21
−
15
=
6
проекции находим AF:
A
F
=
45
⋅
6
27
=
10
7) Находим другую часть, FD, путем вычитания:
F
D
=
C
D
−
A
F
=
45
−
10
=
35
---ответ: на 10 и 35
Объяснение:
Треугольники ABC, ACD и CBD подобны между собой . Это непосредственно следует из второго признака подобия (равенство углов в этих треугольниках очевидно).
Прямоугольные треугольники - единственный вид треугольников, которые можно разрезать на два треугольника, подобных между собой и исходному треугольнику.
Обозначения этих трех треугольников в таком порядке следования вершин: ABC, ACD, CBD. Тем самым мы одновременно показываем и соответствие вершин. (Вершине A треугольника ABC соответствует также вершина A треугольника ACD и вершина C треугольника CBD и т. д.)
Треугольники ABC и CBD подобны. Значит:
AD/DC = DC/BD, то есть
DC2=AD*BD
DC2=9*16
DC=12 см