В остроугольном треугольнике АВС серединные перпендикуляры к сторонам АС и ВС пересекаются в точке D, DC=5 см. Найдите расстояния от точки D до сторон треугольника, если периметр треугольника АВС равен 18 см, АВ:ВС:АС=4:3:2.
скорее всего ты ошибся(-лась) и там четырех угольник АВОС.
И так, сначала чертим окружность с центром в точке О. проводим к нет две касательные из точки А (т.к. касательные выходят из одной точки). проводим два радиуса ОВ и ОС, и биссектрису угла О (скажем так, в условии про биссектрису не пишем) ОА. Получим четырехугольник АОВС. так как прямая ОА делит его на два равных треугольника, нам нужно найти одну сторону (либо СА, либо ВА). я искала через треугольник АОВ. нам известен катет и гепотенуза, второй катет ищем через теорему Пифагора ( квадрат гипотенузы равен сумме квадратов катетов). в нашем случае: чтобы найти неизвестный катет нужно от квадрата гнпотенузы отнять квадрат известного катета. далее находим периметр. периметр это сумма длин сторон. значит нам нужно сложить ОС, ОВ, ВА и АС. после сложения получаем 70.
P.S: если здесь я объяснила не понятно, то я прикрепила фото с решением (сорри за почерк)
Объяснение: Проведём от вершины В высоту ВН. К нам получилось 2 прямоугольных треугольника АВН и ВДН. Пусть отрезок АН=х, тогда отрезок ДН=36-х. Высота ВН является общей стороной этих треугольников. Составим уравнение по теореме Пифагора:
25^-х^=29^-(36-х)^
625-х^=841-(1296-72х+х^)
625-х^=841-1296+72х-х^
-х^+х^-72х=841-1296-625
-72х= - 1080
х= - 1080÷(-72)
х=20
Мы нашли высоту ВН =20.
Теперь найдём ВС - верхнее основание.
Проведём ещё одну высоту СМ от вершины С к нижнему основанию трапеции. Две высоты отсекают он нижнего основания отрезок равный верхнему основанию:
70
Объяснение:
скорее всего ты ошибся(-лась) и там четырех угольник АВОС.
И так, сначала чертим окружность с центром в точке О. проводим к нет две касательные из точки А (т.к. касательные выходят из одной точки). проводим два радиуса ОВ и ОС, и биссектрису угла О (скажем так, в условии про биссектрису не пишем) ОА. Получим четырехугольник АОВС. так как прямая ОА делит его на два равных треугольника, нам нужно найти одну сторону (либо СА, либо ВА). я искала через треугольник АОВ. нам известен катет и гепотенуза, второй катет ищем через теорему Пифагора ( квадрат гипотенузы равен сумме квадратов катетов). в нашем случае: чтобы найти неизвестный катет нужно от квадрата гнпотенузы отнять квадрат известного катета. далее находим периметр. периметр это сумма длин сторон. значит нам нужно сложить ОС, ОВ, ВА и АС. после сложения получаем 70.
P.S: если здесь я объяснила не понятно, то я прикрепила фото с решением (сорри за почерк)
ответ: S= 420
Объяснение: Проведём от вершины В высоту ВН. К нам получилось 2 прямоугольных треугольника АВН и ВДН. Пусть отрезок АН=х, тогда отрезок ДН=36-х. Высота ВН является общей стороной этих треугольников. Составим уравнение по теореме Пифагора:
25^-х^=29^-(36-х)^
625-х^=841-(1296-72х+х^)
625-х^=841-1296+72х-х^
-х^+х^-72х=841-1296-625
-72х= - 1080
х= - 1080÷(-72)
х=20
Мы нашли высоту ВН =20.
Теперь найдём ВС - верхнее основание.
Проведём ещё одну высоту СМ от вершины С к нижнему основанию трапеции. Две высоты отсекают он нижнего основания отрезок равный верхнему основанию:
ВС=НМ=36-2×15=36-30=6; ВС=НМ=6
Теперь найдём площадь трапеции:
S=1/2(АД+ВС)×ВН:
(36+6)÷2×20=42÷2×20=21×20=420