В остроугольном треугольнике KTE серединные перпендикуляры сторон КТ и ТЕ пересекаются в точке М и TM = 13 см. Найдите расстояние от точки M до стороны КЕ, если угол МКЕ = 30° Найдите угол КМЕ
Если гипотенуза АВ параллельна оси Ох, то точки А и В - противоположные. A(-x1; y1); B(x1; y1); |AB| = 2x1 Точка С лежит между ними. C(x2; y2); -x1 < x2 < x1 |AC|^2 = (x2+x1)^2 + (y1-y2)^2 |BC|^2 = (x2-x1)^2 + (y1-y2)^2 По теореме Пифагора |AC|^2 + |BC|^2 = |AB|^2 (x2+x1)^2 + (y1-y2)^2 + (x2-x1)^2 + (y1-y2)^2 = 4x1^2 x2^2 + 2x1*x2 + x1^2 + 2(y1-y2)^2 + x2^2 - 2x1*x2 + x1^2 - 4x1^2 = 0 2x2^2 + 2(y1-y2)^2 - 2x1^2 = 0 x2^2 + (y1-y2)^2 - x1^2 = 0 (y1 - y2)^2 = x1^2 - x2^2 Вспомним, что это парабола y = x^2, и y1 = x1^2; y2 = x2^2 (x1^2 - x2^2)^2 = x1^2 - x2^2 Число равно своему квадрату, значит, оно равно 0 или 1. (x1^2 - x2^2) = (y1 - y2) = 0 или 1 Но 0 разность ординат точек А и С равняться не может, значит, y1 - y2 = 1 Но разность ординат - это и есть высота треугольника.
Прикладываю рисунок* Так как угол ADC=45 градусам по условию, то угол BCD=180-45=135 по свойству. Рассмотрим треугольник CHD. В нем угол CHD равен 90 градусов, так как CH-высота. Угол ADC равен 45 градусам по условию, а угол CHD=180-90-45=45 градусам. Соответственно, этот треугольник равнобедренный - HD=CH. Рассмотрим фигуру ABCH. В ней углы ABC и HAB равны 90 градусов, так как трапеция прямоугольная. Угол AHC=90 градусов, так как CH-высота трапеции. Угол BCH=135-45=90 градусов. Следовательно ABCH - прямоугольник. По условию задачи BC=27 см, значит и AH=BC=27 см, так как это прямоугольник. Из этого можно найти HD. AD равно 33 см по условию, AH=27, поэтому HD=33-27=6 см. Так как треугольник CHD - равнобедренный, в нем HD=CH=6 см. Высота найдена, можно искать площадь трапеции. Sтрапеции=27+33/2 * 6 = 180 см^2 ответ:180 см^2
A(-x1; y1); B(x1; y1); |AB| = 2x1
Точка С лежит между ними. C(x2; y2); -x1 < x2 < x1
|AC|^2 = (x2+x1)^2 + (y1-y2)^2
|BC|^2 = (x2-x1)^2 + (y1-y2)^2
По теореме Пифагора
|AC|^2 + |BC|^2 = |AB|^2
(x2+x1)^2 + (y1-y2)^2 + (x2-x1)^2 + (y1-y2)^2 = 4x1^2
x2^2 + 2x1*x2 + x1^2 + 2(y1-y2)^2 + x2^2 - 2x1*x2 + x1^2 - 4x1^2 = 0
2x2^2 + 2(y1-y2)^2 - 2x1^2 = 0
x2^2 + (y1-y2)^2 - x1^2 = 0
(y1 - y2)^2 = x1^2 - x2^2
Вспомним, что это парабола y = x^2, и y1 = x1^2; y2 = x2^2
(x1^2 - x2^2)^2 = x1^2 - x2^2
Число равно своему квадрату, значит, оно равно 0 или 1.
(x1^2 - x2^2) = (y1 - y2) = 0 или 1
Но 0 разность ординат точек А и С равняться не может, значит,
y1 - y2 = 1
Но разность ординат - это и есть высота треугольника.
Так как угол ADC=45 градусам по условию, то угол BCD=180-45=135 по свойству. Рассмотрим треугольник CHD. В нем угол CHD равен 90 градусов, так как CH-высота. Угол ADC равен 45 градусам по условию, а угол CHD=180-90-45=45 градусам. Соответственно, этот треугольник равнобедренный - HD=CH.
Рассмотрим фигуру ABCH. В ней углы ABC и HAB равны 90 градусов, так как трапеция прямоугольная. Угол AHC=90 градусов, так как CH-высота трапеции. Угол BCH=135-45=90 градусов. Следовательно ABCH - прямоугольник. По условию задачи BC=27 см, значит и AH=BC=27 см, так как это прямоугольник. Из этого можно найти HD. AD равно 33 см по условию, AH=27, поэтому HD=33-27=6 см. Так как треугольник CHD - равнобедренный, в нем HD=CH=6 см. Высота найдена, можно искать площадь трапеции.
Sтрапеции=27+33/2 * 6 = 180 см^2
ответ:180 см^2