Отличительной чертой художника николая николаявча ге, была его любовь к людям.во всяком человеке он находил, хорошую сторону.если он работал и к нему приходил кто-нибудь за советом или с просьбой, он тотчас же бросал работу и отдавал всё своё внимание посетителю, как бы скучен и неинтересен он ни был. у ге был удивительный дар влиять на людей, заставить себя слушать, и найти с каждым человеком те точки сопрекасновения,на которых не могло бы быть разногласия. он прекрасно говорил, всегда вкладывал всю душу в свои слова. некоторых приводила в недоумение, а иногда и раздрожала манера,сразу становится( без мягкого знака) в возможно близкие отношения при первой же встрече. к деньгам ге относился совершенно равнодушно. если у него покупали картину или портрет, он радовался этому главным образом, потому что это было признаком оценки его работы.
Постройте рисунок, будет нагляднее. Пусть трапеция ABCD, BC - меньшее основание, AD - большее, AB - боковая сторона с прямыми углами. Тогда углы ADC и ACB по условию равны и равны 60 градусов. Средняя линия равна полусумме оснований, т.е. (BC+AD)/2. Надо найти её отношение к BC, а значит выразить AD через BC или наоборот. Если угол ACB равен 60 градусов, то и угол CAD тоже (не помню верный термин, но потому что AD и BC параллельны). Раз ADC и CAD равны 60, то и ACD равен 60, а значит треугольник ACD - равносторонний. Сторона CD, таким образом, равна AD (и равна AC, но это, как мы увидим, неважно). Опустим из точки C перпендикуляр к основанию AD, допустим в точку H. Если угол CDH равен 60 градусов, то угол DCH будет 30 градусов. Известно, что против угла в 30 градусов лежит сторона, равная половине гипотенузы. Гипотенуза - CD, и мы узнали что она равна AD. То есть DH = 1/2 CD = 1/2 AD, или, иначе говоря, этот перпендикуляр делит нижнее основание пополам. В то же время AH = BC, то есть BC = 1/2 AD, или AD = 2 BC Мы выразили одно основание через другое, подставляем в искомое соотношение: ((BC + AD)/2 ) / BC = (BC + 2 BC) / 2BC = 3/2 Спрашивайте, если что непонятно
Пусть трапеция ABCD, BC - меньшее основание, AD - большее, AB - боковая сторона с прямыми углами. Тогда углы ADC и ACB по условию равны и равны 60 градусов.
Средняя линия равна полусумме оснований, т.е. (BC+AD)/2. Надо найти её отношение к BC, а значит выразить AD через BC или наоборот.
Если угол ACB равен 60 градусов, то и угол CAD тоже (не помню верный термин, но потому что AD и BC параллельны). Раз ADC и CAD равны 60, то и ACD равен 60, а значит треугольник ACD - равносторонний. Сторона CD, таким образом, равна AD (и равна AC, но это, как мы увидим, неважно).
Опустим из точки C перпендикуляр к основанию AD, допустим в точку H. Если угол CDH равен 60 градусов, то угол DCH будет 30 градусов. Известно, что против угла в 30 градусов лежит сторона, равная половине гипотенузы. Гипотенуза - CD, и мы узнали что она равна AD. То есть DH = 1/2 CD = 1/2 AD, или, иначе говоря, этот перпендикуляр делит нижнее основание пополам.
В то же время AH = BC, то есть BC = 1/2 AD, или AD = 2 BC
Мы выразили одно основание через другое, подставляем в искомое соотношение:
((BC + AD)/2 ) / BC = (BC + 2 BC) / 2BC = 3/2
Спрашивайте, если что непонятно