В параллелепипеде АВСDА1В1С1D1 боковое ребро АА1 наклонено к плоскости основания под углом 60 градусов. В основании лежит прямоугольник. Проекция прямой АА1 на плоскость АВСD совпадает с прямой АС. АА1 = 6 АD = 8, DС = 4. Постройте сечение параллелепипеда плоскостью АА1С1С и найдите его площадь.
В прямоугольном треугольнике ACB (∠С=90°) проведена высота CD.Гипотенуза AB равна 10 см, ∠CBA=30°.Найдите BD .
Дано : ΔABC
∠ACB =90° ;
СD ⊥ AB ;
AB =10 см ;
∠CBA = 30°.
- - - - - - -
BD - ?
- - - - - - можно решать разными но
AC = AB/2 =10/2 = 5 (см)_как катет лежащий против угла ∠CBA=30°
AB² = AC²+СB² ( теорема Пифагора)
CB² = AB² -AC² =10² -5² =75 СB=√75 = 5√3 (см)
Но CB² =AB*BD (пропорциональные отрезки в прямоугольном Δ -е)
BD = CB²/ AB =75/ 10 =7,5 (см ) ответ : 7,5 см .
2-ой
∠ACD = ∠CBA = 30° (углы со взаимно перпендикулярными сторонами) следовательно
AD = AC/ 2 (опять как катет против угла ∠ACD =30° в ΔADC )
AD =5/2 =2,5 см ; BD =AB -AD =10 -2,5 =7,5 (см )
см приложение
Объяснение:
Дано: tg a + ctg a = 9.
Примем tg a = t, ctg a = 1/t.
Подставим в заданное уравнение: t + 1/ t = 9.
Приведя к общему знаменателю, получаем квадратное уравнение:
t² - 9t + 1 = 0.
Квадратное уравнение, решаем относительно t:
Ищем дискриминант:
D=(-9)^2-4*1*1=81-4=77;
Дискриминант больше 0, уравнение имеет 2 корня:
t_1 = (√77-(-9))/(2*1) = (√77+9)/2 = √77/2+9/2=√77/2+4.5 ≈ 8.887482
t_2 = (-√77-(-9))/(2*1) = (-√77+9)/2 = -√77/2+9/2 = -√77/2+4.5 ≈ 0.112518.
Так как 1/8,887482 = 0,112518, а 1/8,887482 = 0,112518, то мы получили 2 пары значений тангенса и котангенса угла.
Далее используем формулы перехода от одной функции к другой.
sin α = tg α/+-√(1 + tg²α) = (√77/2+4.5)/(√(1 + (√77/2+4.5)²) = √((9-√77)/18) ≈ 0,111812 .
Аналогично для второго значения тангенса находим:
sin α = √((9+√77)/18) ≈ 0,993729.
Косинусы равны обратным значениям синусов.
cos α = √((9+√77)/18) ≈ 0,993729.
cos α = √((9-√77)/18) ≈ 0,111812 .