В параллелепипеде дано ABCDA1B1C1D1 точка M принадлежит AD Причём AM:MD=1:3 Точка P принадлежит DC, причём DP:PC1=2:5 Разложите вектор MP по векторам AB,AD,AA1
Пусть общая хорда AB , O₁ и O₂ центры окружностей ;O₁A=O₂A =r ,O₁O₂ =r. --- O₁O₂ ⊥ AB. ΔO₁A O₂ (также ΔO₁BO₂) равносторонние со стороной r. AB= 2*(r√3)/2)⇒r =(AB√3)/3 .
Пусть AB и CD взаимно перпендикулярные хорды (AB ⊥ CD) , P_точка пересечения этих хорд ( P=[AB] ⋂[CD] ) b AP= DP =10 ; BP =CP =16 см.
R - ? Например , из ΔACD: AC/sin∠ADC =2R ⇒R =AC/2sin∠ADC.
---
O₁O₂ ⊥ AB. ΔO₁A O₂ (также ΔO₁BO₂) равносторонние со стороной r.
AB= 2*(r√3)/2)⇒r =(AB√3)/3 .
Пусть AB и CD взаимно перпендикулярные хорды (AB ⊥ CD) , P_точка пересечения этих хорд ( P=[AB] ⋂[CD] ) b AP= DP =10 ; BP =CP =16 см.
R - ?
Например , из ΔACD: AC/sin∠ADC =2R ⇒R =AC/2sin∠ADC.
ΔAPC =ΔBPD (по катетам ) ⇒AC =DB =√(10² +16²) =2√(5² +8²) =2√89 (см).
ΔAPD равнобедренный прямоугольный треугольник
⇒∠ADP || ∠ADC|| =∠DAP=45° .
Следовательно :
R =AC/2sin∠ADC =AC/2sin45° =(2√89)/(2*1/√2) =√178 (см).
окей я добавил фото с рисунками
часть 1
1. 3)
2.
дано:
δавс
∠а-112°
найти:
∠в
находим угол при основании
1)180-112=68°
углы при основании равны, зная это находим третий угол
2)∠=180-68*2=44°
ответ: 44°
3.
дано:
δавс
∠в=30°
ас=3 см
найти:
вс
сторона, лежащая напротив угла в 30 в 2 раза меньше гипотенузы, зная это
вс=3*2=6 см
ответ: 6 см
4.
дано:
окружность с центром о
ав-хорда
∠оав=48°
найти:
∠аов
если соединить точки хорды с центром получим равнобедренный треугольник, зная, что углы у него при основании равны, считаем угол аов
∠аов=180-48*2=84°
ответ: 84°
часть 2
5.
дано:
δавс
найти:
∠при основании
углы при основании равны
пусть угол при основании будет х°, значит противолежащий основанию 7х°, исходя из этого составим уравнение
7х+х+х=180
решаем как линейное уравнение
9х=180
х=180: 9
х=20
ответ: 20°